| AUTHOR | Clune, William H.; And Others |
| :---: | :---: |
| title | Changes in High School Course-Taking, 1982-88: A Study of Transcript nata from Selected Schools and States. CPRE Research Report Series. |
| INSTITUTION | Consortium for Policy Research in Education, New Brunswick, NJ. |
| SPONS AGENCY | Office of Educational Research and Improvement (ED), Washington, DC. |
| REPORT NO | CPRE-RR-022 |
| PUB DATE | Dec 91 |
| CONTRACT | Kll7G10007 |
| NOTE | 91p.; For Appendix E, "High School Transcript Data Tables," on which this report is based, see EA 023 723. |
| AYAILABLE FROM | Center for Policy Research in Education, Eagleton Institute of Politics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-1568 (\$12.00 prepaid). |
| PUB TYPE | Reports - Research/Technical (143) |
| EDRS PRICE | MrOl/PCO4 Plus Postage. |
| DESCRIPTORS | *Academic Records; *Course Selection (Students); Excellence in Education; *Graduation Requirements; High Schools; *High School Seniors; Low Achievement |

## ABSTRACT

A major soal of state education reforms in the 1980 s was to increase the number of courses stude vere required to complete for graduation. This document prov. antitat.ive transcript data from high schools enrolling mosc.ay lower achieving students in the 1980s. At 3 points in time, random samples of approximately 25 transcripts of graduating seniors were collected from 4 states (California, Florida, Missouri, and Pennsylvania). An increase in the number of courses taken by the students did not seem to reflect an increase in academic achievement. At the end of the decade, the graduates of lower achieving, heavily urban schools did not reach the averages in the $\mu$ states or the nation of the percent of students enrolled in college preparatory courses. The effect from increasing state requirements for graduati' " (an increase in the number of courses required) is mixed and ambiguous. The strongest case for a reform effect was in science. Substantial change in science and in other subjects, however, also occurred prior to reform. This may indicate a genuins reform movement rather than a single powerful policy instrument. Four appendices include: (1) state requirements; (2) characteristics of samples; (3) technical notes on coding; and (4) course classifications. (29 references) (LAP)

[^0]$\qquad$

# Changes in High School Course-Taking, 1982-88: A Study of Transcript Data from Selected Schools and States 

William H. Clune<br>Paula A. White<br>Shirley Sun<br>Janice H. Patterson

Rutgers. The State University of New Jersey University of Southern California - Harvard University Michigan State University - Stanford University University of Wisconsin-Madison

## CONSORTIUM FOR POLICY RESEARCH IN EDUCATION

CPPI unites six of the nation's leading reserch institutions in an exciting venture to improve the quality of schooling. The Consortium operates two separately funded, but interlinked research centers: The Policy Center and The Finance Center. Both centers are funded by the U.S. Cepartment of Education's Office of Educational Research and Improvement.

Members of CPRE are Rutgers, The State University of New Jersey; The Jniversity of Southern California; Harvard University; Michigan State University; Stanford University; and the University of Wisconsin-Madison.

The research agenda for both the CPRE Policy Center and the CPRE Finance Center is built around three goals:

- To focus research on policies that foster high levels of learning for students from a broad range of social and economic backgrounds;
- To conduct research that will lead to greater coherence of state and local prograni and finance policies that promote student learning; and
- To conduct research that will increase the responsiveness of state and local finance and program policies to the diverse needs of students, schools, postsecondary ins itutions, communities and states.

In addition to con acting research as described above, CPRE publishes reports and briefs on a variety of education issues. The Consortium also sponsors regional policy workshops for state and local policymakers.

## CPRE Research Report Series

Research Reports are issued by CPRE to facilitate the exchange of ideas among policymakers and researchers who shar: an interest in education policy. The views expressed in the reports are those of individual authors, and are not necessarily shared by the U.S. Department of Education, CPRE, or its institutional partners. This publication was funded by the U.S. Department of Education, Office of Educational Research and Improvement, grant number OERI-RI17G10007.

Copies of this report are available for $\$ 12.00$ each, pre-paid. Prices include book-rate postage and handling. Quantity discounts are available. Write: CPRE, Eagleton Institute of Politics, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-1568; attention: Publications. Phone (908) 828-3872.

# Changes in High School Course-Taking, 1982-88: <br> A Study of Transcript Data from Selected Schools and States 

William H. Clune<br>Paula A. White<br>Shirley Sun<br>Janice H. Patterson

December, 1991

CPRE Research Report Series RR-022

- Copyright 1991 by the Consortium for Policy Research in Education

Rutgers, The State University of New Jersey University of Southern California - Harvard University Michigan State University - Stanford University University of Wisconsin-Madison

## Contents

List of Tables ..... $v$
Acknowledgements ..... vii
A' suact ..... ix
Introduction ..... 1
Research Methods ..... 3
The State, District, School, And Student Transcript Sample ..... 3
Coding Courses from the Transcripts: Credits, Type of Course andLevel of Difficulty5
Results ..... 9
Conclusion ..... 37
References ..... 39
Appendix A: State graduation requirements in sample states ..... 43
App tndix B: Characteristics of district and school sample ..... 45
Appendix C: Technical notes on coding courses from transcripts ..... 51
Appendix D: Course Classifications from the Secondary Schools Taxonomy (SST) ..... 55

## List of Tables

Table 1: Change in average credits per student for the total sample by subject ..... 10
Table 2: Percent of $\left\{^{\because}\right.$ credits held by students in different subjects for the total sample ..... 11
Table 3: Average credits by subject and average total credits per student for 2 national samples and the total sample of this study ..... 13
Table 4: Changes in average credits per student by 4 states and 8 subjects, 1982-88 ..... 14
Table 5: Changes in average credits per student by 9 districts and 8 subjects, 1982-88 ..... 14
Table 6: Changes in average credits per student by 16 high schools and 8 subjects, 1982-88 ..... 15
Tat - $\quad$ st enrollment courses, percent enrolled in these courses, and percent alts in each level of difficulty by subject for the total sample in 1988 ..... 19
Table 8: Changes in average credits per student in basic, middle, and advanced levels of 8 subjects, 1982-88, by 16 schools ..... 21
Table 9: Number of Schools $(\mathrm{n}=16$ ) from Table 8 with statistically significant changes in averąe credits per student, 1982-88, in basic, middle, and advanced levels of 8 subjects ..... 24
Table 10: Percent enrollment change and percent of students enrolled in math, science and vocational coun es with a difference of $10 \%$ or more in percent of enrollment between 1982 and 1988 ..... 25
Tabie 11: Percent enrollment change and percent of students enrolled in art, foreign languages, personal skills, and social studies courses with a difference of $10 \%$ or more in percent of enrollment between 1982 and 1988 ..... 26
Table 12: Percent of students enrolled in 3 key academic math courses, in 4 states, at the end of the 1980s ..... 28
Table 13: Frercent of students enrolled in 3 key academic science courses, in 4 states, at the end of the 1980s ..... 29
Tabie 14: Completion Rate for the Grade 9 Cohorts ..... 31
Table 15: Average credits per student in math, science, and vocational for 1981 and 1983 grade 9 cohorts ..... 34
Table 16: Averaze credits per student in art, English, foreign language, personal skills, and social studies for 1981 and 1983 grade 9 cohorts ..... 35

## Acknowledgements

The research reported in this paper was supported by the Consortium for Policy Research in Education (CPRE); the National Science Foundation (NSF); and by the Wisconsin Center for Education Research, School of Education, University of WisconsinMadison. Helpful comments on earlier drafts were received from Rolf Blank, Brian DeLany, Richard Elmore, Susan Fuhrman, Lorraine McDonnell, Andrew Porter, and Marshall Smith. Lisa Armstrong and others in our office spent great time and effort on the data and tables. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of commentators, the U. S. Department of Education, Office of Educational Research and Improvement, the National Science Foundation, the institutional partners of the CPRE, or the Wisconsin Center for Education Research.

William Clune is Voss-Bascom Professor of Law at the University of Wisconsin Law School, Director of the Wisconsin research group of the Consortium for Policy Research in Education (CPRE), a member of the Executive Board and faculty of the LaPollette Institute of Public Affairs at Wisconsin, and Co-director of the Wisconsin Center for Educational Policy (WICEP). His past research on education policy has included school finance, school law, implementation, special education, and public employee interest arbitration. His present research with CPRE concerns the effects of grajuation requirements and other student standards, school site autonomy, regulation of the curriculum, systemic educational policy, and the relationship between -rhool finance and student achievement. He co-directed a conference on educational decentralization and choice for the LaFollette Institute.

Paula A. White is Senior Research Fellow at the Consortium For Policy Research in Education, University of Wisconsin-Madison. She has conducted research on educational policy in the areas of school-based management, teacher empcwerment, course-taking patterns, and high school graduation requirements. Dr. White is currently investigating the impact of effrets to upgrade high school mathematics for lower-achieving students.

Janice Pattensuin served as Senior Research Fellow at the Center for Policy Research in Education (CPRE) at the University of Wisconsin-Madison at the time the research for this paper began. Dr. Patterson's previous research projects include investigating the effects of education reform on academically at-risk high schoolers. She is also recogrized for her work on computer education policy and computer use in schools. Dr. Patterson is currently Vice-President of Patient Services at the La Salle Clinic in Appleton, Wisconsin.

Shirley Sun is a doctoral student at the University of Wisconsin-Madison. As Project Assistart for this research, Ms. Sun did important work on analysis cf the transcripts. She is originally from Taiwan and plans to return there upon completion of her dontoral degree in journalism.

## Abstract

Increased academic course-taking was a major goal of the education reforms of the 1980s; and increased graduation requirements were the single anost common change in state policies.

This study was designed to provide quantitative transcript iata about changes in cours:-taking among graduates of high schools enrolling mostly lower-achieving students in stares adopting high graduation requiririents during the 1980 s. Random samples of approximately 25 transcripts of graduating seniors were collected from each of 16 schools, in 9 districts, in 4 states (California, Florida, Missouri, and Pennsylvania) at three points in time, allowing change to be observed in two 4-year periods just prior to and after the requirements became effective. To provide data about students other than high school graduates, random samples of transcripts were collected in the same schools of approximately 50 students beginning 9 th grade at two points in time, one cohort prior to the effective date of the requirements and one cohort whose course-taking would be bound by the requirements, if they graduated.

Courses from all the transcripts were coded according to the Secondary School Taxonomy (SST) of high school courses, a system specifically designed to provide sensitive measures of level of difficulty, especially in math, science, and vocational courses (Brown, Gifford, Hoachlander, Meyer \& Tuma, 1989).

The changes which occurred must be counted at least a moderate success. Average credits per student increased in all academic subjects; and the level of difficulty of these courses also increased. Science was the biggest gainer of the 1980s, with growth primarily in beginning academic courses like Physical Science, Earth Science, and Chemistry I. In math, remedial courses like Basic Math and General Math lost credits, with gains occurring in courses iike Pre-Algebra ard Algebra. The major gains in English were at the advanced level, especially in English 11. Furthermore, the amount of extra course-taking was meaningful-almost half a year more total credits, a year or more of extra science, half a year extra foreign language (most frequently Spanish), and a third of a year of extra math (half a year extra math in several urban districts).

If the increased acydemic course-taking we observed was typical, it is likely to be reflected in increased academic achievement. However, even af the end of the decade, the graduates of our lower-achieving, heavily urban, schools did not reach the averages in their states or the nation in percent of students enrolled in college preparatory courses. The most frequently adied courses tended to be the ones at the beginning of the college prep sequence rather than the end. Nevertheless, such courses have been shown by research to have a suistantial "kick" on achievement test scores (for example, both PreAlgebra and Algebra I).

Contrary to the concerns of some observers about possible negative effects of higher standards, the separate sample of 9th grade cohorts in the same schools (not necessarily high school graduates) showed little evidence of reduced course work, higher rates of withderwal from school, or lowered difficulty of course work. Thus, gains for the graduates dic not seem to produce more failure for other students. But the schools varied drastically :mong themselves, both before and after new graduation requirements took effect, in the average time spent by students at the school-that is, in withdrawals from school indicating either dropouts or surdent mobility.

Evidence of an independent effect of the state graduation requirements is mixed and ambiguous. Course-taking in our high schools nostly resembled national averages both before and after reform. The strongest case for a reform effect was in science. Science requirements were highest relative to pre-existing course-taking, and science course-taking showed the largest and most consistent gains in our sample. Yet, in science, as with other subjects, substantial change occurred prior to reform. Reform which lags, rather than leads, social change is a common finding in social $\cdot \cdots \cdots$. High school course-taking also is reguleted by multiple policies (e.g., university, dissuxu, and school requirements in addition to laws of the state). Apparently, in this as in other areas, we have been witressing a genuine reform movement rather than a single powerful policy instrument.

Readers of this report may wish to obtain the complete data tables upon which this report was based. These tables were published as a separate, 374 -page document. Changes in Filigh School Course-taking, 1982-1988: A Study of Transcript Data from Selected Schools and Stares-Complete Data Tables provides detailed data on average credits per suudent by subject and level of difficulty for the total sample, each of 4 states, each of 9 districts, and each of 16 schools. See the inside front cover of this report for information on obtaining the document from the Consortium for Policy Research in Education.

## Introduction

Academic upgrading, in the sense of more students taking more challenging academic subjects, was a primary purpose of the educational reforms of the 1980s (McDonnell, 1988; National Commission on Excellence in Education, 1983; Resnick \& Resnick, 1985). Higher state high school graduation requirements were the mest popular policy instrument used for that purpose (adopred by some 45 states, Clune, 1989). Research generally supports the importance of this policy objective, because the level of academic course-taking is a primary influence on student achievement in those areas (Gamoran, 1987; Jones, Davenport, Bryson, Bekhuis, \& Zwick, 1986; but see Koretz, 1988). In a recent comprehensive synthesis of the school factors affecting achievement amons high school students, the authors conclude:

Quite simply, the principal determinant of academic achievement is coursetaking. The structural effects of schools on students' academic outcomes accrue through the influence of curricular organization on these critical schooling behaviors (Bryk, Lee \& Smith, 1990, p. 187).

Given the popularity of state graduation requirements, and the importance of academic upgrading, it would be valuable to know about changes in corrse-taking during the 1980s among students in need of upgrading in states with graduation requirements high enough to make a difference.

National studies of random samples of high school transcripts are valuable but do not provide information about change by state (see Blank \& Dalkilic, 1990; Gifford, Harde, Hoachlander, Meyer, \& Tuma, 1989; Goertz, 1989; Meyer, 1990; Westat, ITh., 1988; Wilson, Rossman, \& Adduci, 1989).

Previous research based on national samples did suggest that the privisry impact of the requirements would be likely to occur in the few states which sei requirements above the average of preexisting academic course-taking, especially among non-college treck students who previously fell below that average. For example, while very few states required more than 2 math and 2 science credits in 1987, the average student in 1982 took 2.62 redits in math and 2.21 credits in science (iiejeyer, 1990). By the same token, the few states requiring 3 credits in math or science couidu expect increased course-taking among most students but not among the sizeable number of students excueding even those levels in 1982 (Meyer, 1990).

Prior research on course-taking among average or below-average students in states with high graduation requirements made quantitative estimates of some changes but was based on interview data (Clune, 1989). In that research, concerns also were raised about the composition of these expected gains: to what extent did the gains occur almost
exclusively in basic and remedial courses, thus diluting the impact of the courses on achievement (see Clune, 1989, and Gamoran. 1987); and was there an adverse substitution of basic courses in math and science for vocational courses some of which contain advanced mathematical content (Clune, 1989; Hanson, 1989; Meyer, 1988)?

This study is designed to provide quantitative anscript data on the impact of graduation requirements where the requirements are expected to have their greatest impact: among middle- and low-achieving students in states with high requirements. In other words, this study provides a kind of laboratory for assessing the impact of graduation requirements where they have been used to push existing practice. The information provided should be valuable to the vast majority of states which adopted lower requirements ratifying existing practice and which may have $\alpha$ assion to consider higher requirements in the future. Another contribution of the study is in assessing the utility of indicators of student coursc work disaggregated by state, district. and school (see Blank \& Schilder, 1990).

## Research Methods

The State, District, School, And Student Transcript Sample

State sample. The sample of states was chosen toward the high end of graduation requirements, with one state having somewhat lower requirements (for details, see Appendix A). Abstracting changes in math and science, the states can be ranked roughly as follows:

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Florida | 3 | 3 | + 3 | +3 |
| Pennsylvania | 3 | 3 | +2 ${ }^{1}$ | +2 ${ }^{1}$ |
| California | 2 | 2 | +2 | +2 |
| Missouri | 2 | 2 | +1 | +1 |

It can be seen from previous research (Clune, 1989; Meyer, 1990) that these states are indeed unusual in the national context. Meyer's data (1990) (which agree with ours) show only 3 states with a requirement of 3 science credits ( 2 in our sample) and only 10 states with a requirement of 3 mathematics credits ( 2 in our sample). We have 2 of 3 states with a requirement of both 3 math and 3 science credits (the third being Louisiana). Change from previous state requirements is less relevant than change from preexisting practice, but insofar as useful, only Florida can be considered a high change state. ${ }^{1}$

District and school sample. In each state, we sampled 4 high schoois. In 3 states (Florida, Missouri, and Pennsylvania), we sampled 2 high schools in each of 2 districts. The California school sample consists of 2 high schools in 1 district, plus 1 high school in each of 2 other districts.

[^1]In every state, a large, urban district and a rumal, suburban or mid-sized district were selected. Urban areas were included because we were particularly interested in investigating the effects of increased requirements on low-achieving students. The second or third district in each state was sampled to provide a range of mid-sized, suburban or rural across the entire four state sample. Confidentiality was promised to districts an" schools and therefore the districts and schools are assigned numbers and the names are not revealed.

Schools in the sample met the following crizeria, exceptions noted:

1. A comprehensive 9-12 high school that maintained the same grade-level organization before and after the implementation of increased course requirements. (One of the Missouri high schools is an exception to this since it did not become a four-year high school until 1984. Prior to 1984 it was a three-year high school, including grades 10-12; see below.)
2. Average student achievement on a standardized measure wis in the lowest quartile of schools within the state. In the case of 2 schools in 2 districts, orly 1 high school was available in the district; and, in those instances, the district was selected because average student achievement was in the bottom half of the state.
3. Schools that have undergone no major changes since 1980, particularly population or other types of demographic shifts.

Appendix B provides descriptive data on each district and school. In cases where we were unable to get achievement data, we relied on district administrators to identify districts in the bottom half of the state. Our process required that schools be verified as "low-achieving" by three separate sources.

Are the districts and schools selected representative of their states ind districts? We did not use a iandom method of selection, but rather looked for districts and schools which had specified characteristics and where we also could get access to transcripts. Thus, we cannot claim statistical representativeness. We did look for schools with certain typical characteristics; and we did not find many schools in each state which satisfied all the criteria. Also, as reported in this paper, our results are broadly consistent with other studies using random samples. On the other hand, possible anomalies and idiosyncratic patterns appear in the data on some schools (such as our showing of gains in vocational education in bott Pennsylvania and Florida, which seems contrary to some previous research; see Vocational Education, 1990 and the discussion of Florida data in Ccnclusion \#6 below).

Student (transcript) sample. A random sample of approximately 25 transcripts of graduated seniors was collected from each school at three points in time, two prior and one after the implementation of new graduation requirements. The typical cohorts graduated in 1982, 1985 and 1987 or 1988. All graduates were selected from the pool of
students wito maintained attendance in the same school throughout their high school years. ${ }^{2}$

We also wanted to have a sample of transcripts representing students other than the graduates. For this purpose, from each school we also collected random samples of the traiscripts of approximately 50 students who started 9th grade in 1981 and 1983. These transcripts reflected the course-taking of these students for as long as they attended that particular high school (ranging from less than one full semester to eight semesters). The 1981 cohort of 9 th graders would have graduated in 1985, before the change in graduation requirements; while the 1987 target graduation dare of 1983 9th graders made their course-taking subject to the new requirements. Originally, we hoped that the 9th grade transcripts would reveal information about dropping out; but, because the transcripts are uninformative about why students left school, our analysis was limited to trends in course-taking and number of withdrawals regardless of cause (that is, for example, including both dropping out and transferring to another school).

## Coding Courses from the Transcripts: Credits, Type of Course and Level of Difficulty

Actually obtaining the sample of transcripts described above invoived many problems and incidents of a type familiar to anyone who has gathered inscripts from schools but not possible to recount here for reasons of space. Several issues concerning coding of the transcripts should be discussed, however.

Appendix C discusses some issues involved in translating number of credits awarded for different courses in districts and schools using different numerical systems for awarding credit. Appendix $\mathbf{C}$ also discusses practical problems in identifying the content of courses with mysterious or partially illegible names. One of the most time-ronsuming aspects of this study was the process of calling individual schools to identify uninterpretable transcript entries.

Coding courses according to level of difficulty is a major element of this study and deserves discussion in the tert. To code the courses by level of difficulty we relied on the Secondary Schoois Taxonomy (SST) as prepared by Brown et al. (1989) for the National Assessment of Vocational Education (and to some extent on the Council of Chief State School Officers (CCSSO) State Science and Math Indicators Project (Blank \& Dalkilic, 1990). The SST uses the course codes from the ERIC system (National Center for Education Statistics (1982), but classifies the subjects differently, distinguishes between levels of difficulty within subjects, and has a more comprehensive list of subjects, especially in math, science, and vocational education. In terms of classifying subjects, the

[^2]SST distinguishes between academic courses (inc'uding math, science, English, social studies, art, and foreign languages), vocational courses, courses intended for personal development (e.g., physical education, military science, general skills, and religion), and special e'ucation courses. ${ }^{3}$ In terms of level of difficulty, the SST uses a hierarchical format for each subject, beginning with basic or remedial courses and progressing to more advanced level courses. The CCSSO Project was of assistance in grouping the math and science courses into three separate levels of difficulty.

We decided that we needed a uniform number of levels within subjects to compare changes across time periods, and we decided that three levels gave us the best compror 'se of simplicity and detail. Thus, in each of the subjects we compressed the SST grading of courses into three levels of difficulty: basic, middle, and advanced. Our general approach was to put the high enrollment entry-level courses in each subject into the basic category and classify the rest of the courses in that subject matter from that starting point. Thus, in several subjects, the basic level insludes the "I" (ui grade 9) course; the middle level includes the "II" (or grade 10) course; and the advanced level includes the "III" and "IV" (or grades 11 and 12) courses. Appendix C discusses practical problems in grouping courses by level of difficulty.

Math and science are different because high schools commonly offer several remedial courses with high enrollments preceding the "I" level. The basic level of math includes general, remedial and simplified math courses. The middle level of math includes applied math and pre-algebra courses. The advanced level of math includes algebra, geometry, trigonometry, calculus, and statistics. In science, the basic level includes introductory level science survey courses, basic biological science, and basic chemistry courses. The middle level of science includes the second course in a sequence such as biological science, chemistry, ard physics. The advanced level of science includes specialized survey science courses, advanced biological science, advanced chemistry, advanced physics, and other specialized science courses.

One reaction which some people have to the levels of difficulty in math and science is that the middle level of Math (e.g., Pre-Algebro) is easier than the middle level of science (Biology, Chemistry, and Physics $\pi \because \because$ addition to the high enrollments in remedial nath courses, another justificatiu. as he split in math is the strong influence of courses like Pre-Algebra on math achievement scores (Meyer, 1988). Note that there is nothing in our analysis which requires equivalence of levels across subjects (e.g., basic math somehow equal to basic English). Our main purpose was to record changes of levels within subjezts with a roughly common vocabulary. Also, in some subjects higher level courses may not be much more difficult than lower ones (e.g., U.S. History 2 versus U.S. History 1). Indeed, the SST system is probably most sensitive to level of difficulty

[^3]in math, science, and vocational education. Of course, the regular sequence (I, II, III, etc.) in foreign language also is a good measure of level of difficulty.

See Appendix D for our three-level breakdown of the SST course categories in all subjects (the actual names of courses in particular schools are much more diverse: this is the problem of identifying course content mentioned above and discussed in Appendix C). See also T-ble 7 on page 19 which displays data on the percent of our sampled students and high enrollment courses in each of the three levels in the eight subjects.

## Results

This paper is designed to stand alone with its own internal tables. Under separate cover, we have prepared a comprehensive set of tables (filling some 374 pages) which give detailed data on average credits per student by subject and level of difficulty for the total sample, each of 4 states, each of 9 districts, and each of 16 schools. Here, we discuss the results of our study.

Conslusion \#1: Credits in academic subjects increased; the average graduate in our sample of lower-achieving schools added almost one-half year of academic course-taking during the 1980s.


#### Abstract

PLEASE NOTE: Under the Carnegie unit system, one credit in American high schools is equivalent to one full year of work in that subject ( 5 classes per week for one full year). Thus, fractions of credits also correspond to fractions of the year (e.g., $5=1 / 2$ year). Six credits for a single year could be earned by 6 different subjects, each meeting 5 times a week (in effect, a 6-period instructional day, every day). A total of 24 credits in high school represents the equivalent of 24 full-year courses. We converted transcripts using a different metric into the Carnegie system. However, to understand the total amount of available instructional time represented by a credit, one would have to know the length of the school year and class period in that particular state, district, and school. To complicate matters, insiructional time per credit may change across time periods in the same location. For example, our previous research revealed some shortening of class periods and spreading of course content across new courses (Clune, 1989). However, the increased level of difficulty of courses reported later in this paper make : unlikely that the students §ained credits without increased instructional time or new subject matter.


Table 1 displays changes in average credits per student in our total sample (pooling all schools) by subject during the 198is. The clearest pattern is the column for credit change 1982-88. Statistically significant gains occurred in average credits per student for every core academic subject (math, science, English, foreign language, and social studies), and in none of the non-academic subjects (vocational, art, and personal skills). The sum of the gains in academic credits across subjects is 2.23 credits, about $10 \%$ of a 4 -year high school credit load. Another way th think about this change is as $40 \%$ of one year of course-taking (2.23/5.75). In terms of time on task as measurad by credits, then, the students in these lower-achieving schools added almost one-half year of academic course-taking during the 1980s.

## Table 1

Change in average credim per student for the total sample by suniop xt

|  |  |  | arsalic $\qquad$ ssos-5ss |  |
| :---: | :---: | :---: | :---: | :---: |
| Math (academic) | .37* | .34* | . 03 | 13\% |
| Science (academic) | .95* | .43* | .52* | 51\% |
| Vocational (nonacademic) | . 13 | . 17 | -. 04 | 3.2\% |
| Art (non-mendemic) | . 16 | -. 11 | .27* | 11\% |
| English (academic) | .20* | .25* | -. 06 | 5.0\% |
| Foreign Lenguage (acudemic) | .44* | .14* | .29* | $79 \%$ |
| Fersonal Skills (non-academic) | -. 20 | -. 11 | -. 09 | -6.2\% |
| Social Studies (academic) | .27* | -. 03 | .30* | 8.1\% |
| *On this table and on subseqrenat tables, the asterisk indicates statistical significance at the 0.05 level or higher. |  |  |  |  |

Conclusion \#2: Growth in andemic credits occurred as the result of growth in total credits, rather than substitution of academic for other credits; most suijects stayed at abrut the same percentage of total couise-taking.

The next question is whether growth in academic credits came from growth in total credits or decline in non-academic credits. Table $\dot{L}$ answers that question by looking at the share of total credits held by different subjecis at different times.

The results show very little change during the 1980s. Most subjects had the same share of the credits in 1988 as in 1982, within $1 \%$ or less. The biggest change was $3 \%$ for science, which moved from about $9 \%$ of the curriculum in 1982 to $12 \%$ in 1988, a gain of $3 \%$. The only other change greater than $1 \%$ was Personal Skills, declining by $2 \%$ (from 15\% to 13\%).

Thus, growth in academic credits occurred as the result of growth in total credits, rather than substitution of academic for other credits; in fact, most subjects maintained their proportion of total course-takin',.

Table 2
Percent of all credits held by students in different subjects for the total sample

|  | K. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \%\%** |  |  |  |  |
| Art | 6.8\% | 6.0\% | 6.8\% | -0.8\% | 0.8\% | 0\% |
| English | 19\% | 19\% | 18\% | 0\% | -1.6 | -1\% |
| Foreign Language | 2.6\% | $3.1 \%$ | 4.2\% | 0.5\% | 1.1\% | 1.6\% |
| Math | 13\% | 14\% | 14\% | 1\% | 0\% | 1\% |
| Personal Skills | 15\% | 14\% | 13\% | -1\% | -1\% | -2\% |
| Science | 8.7\% | 10\% | 12\% | 1.3\% | 2\% | 3.3\% |
| Social Studies | 15\% | 14\% | 15\% | -1\% | 1\% | 0\% |
| Vocational | 19\% | 19\% | 18\% | OF | -1\% | 1\% |

*On this table and on subsequent tables, totals may not add up to $100 \%$ due to rounding error.

Conclusion \#3: Credits by subject among the graduates of our sample of lowerachieving schools closely resembled national averages, both before and atter the reforms, with the exception of science and foreign languages. Thus, high schools with concentrations of low-achieving students do not differ much from average high schonls in terms of total credits in each subject.

Table 3 compares average credits per subject and average total credits per sudent in our total sample with two different national samples (NAVE [Gifford et. al, 1989] and Westat, 1988). The expectation might have been that our low-achieving schools would start out lower than the national averages and end up higher, because of the high graduation requirements in our states. To some extent this expectation was fulfilled. Students in our states added slightly more total credits than the national averages during the 1980s (an increase in over 2 credits, compared with increases of $1+$ credits in the national averages), and ended the decade taking about one credit (one full course) more than the average American high school student.

But the general pattern is one of similarity to the national averages. All samples show an increase in total credits from $21+$ to $23+$. Credits by subject in 1982 and 1988 and, consequently the changes from 1982 to 1988, are mostly quite similar.

The impact of state requirements may be most evident in science and foreign languages. In our sample, science started out lower than the national averages and ended up higher, gaining over twice as many credits as he national averages during the decade (a gain of about 1 credit vs. about 5 credits in the national samples). As noted earlier, the science requirements in our states were quite high relative to the nation as a whole. The other distinct pattern is in foreign language, where the gap between our students and the national averages closed slightly during the 1980 s but did not disappear.

How to intarpret similarity with national averages is difficult to say. Perhaps in the absence of high state requirements, our districts would have fallen behind in the 1980s. But, generally speaking, the data indicate that high schools with concentrations of lowachieving students do not differ much from other high schools in terms of total credits in each subject. As we will see, the differences are more in the level of difficulty wirt in subjects than in the total credits (e.g., students take about the same amount of moh, but different courses).

Conclusion \#4: The clearest pattern of change logically related to the graduation requirements was in science, with statistically significant growth occurring in the total sample as well as in all states, districts, and schools.

## Table 3

Average credits by subject and average total credits per studeni for 2 national samples and the total sample of this study

| Sutidesk |  | 192\％ |  |  |  |  |  | k k | 姼 8 \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mivjuss\％／k | WHEs／19 | \％\＄kNe | \¢乡148\％ | Whewivis | ¢上丨k | Vivimsk | Whiky |  |
| Art | 1.43 | 1.39 | 1.46 | 1.40 | 1.41 | 1.62 | －． 03 | ． 02 | ． 16 |
| English | 3.90 | 3.80 | 3.97 | 4.02 | 4.05 | 4.16 | ． 12 | ． 25 | ．20＊ |
| Foreign Lang | 1.09 | 1.05 | 0.56 | 1.45 | 1.47 | 0.99 | ． 36 | ． 42 | ．44＊ |
| Math | 2.62 | 2.54 | 2.85 | 3.07 | 2.98 | 3.22 | ． 45 | ． 44 | ．37＊ |
| Perso．al Skills | 2.75 | 1.93 | 3.30 | 2.80 | 2.00 | 3.09 | ． 05 | ． 07 | －． 20 |
| science | 2.21 | 2.19 | 1.87 | 2.54 | 2.63 | 2.82 | ． 33 | ． 44 | ．95＊ |
| Social Studies | 3.21 | 3.10 | 3.26 | 3.33 | 3.35 | 3.53 | ． 12 | ． 25 | ．27＊ |
| Vocational | 4.38 | ＋4．09 | 4.15 | 4.21 | ＋4．17 | 4.28 | －． 17 | ＋． 08 | .13 |
| Other |  | 1.14 |  |  | 1.16 |  |  |  |  |
| TOTAL | 21.59 | 21.23 | 21.42 | 22.82 | 23.22 | 23.71 | 1.23 | 1.99 | 2.32 |

${ }^{+}$Includes computer science and literacy as vocational．
＊Statistically significant al 0.05 or higher．
${ }^{4}$ Source：Gifford，Harde，Hoachlander，Meyer，and Tucia．（1989，April）．Course enrollwent patterns in secondary schools：1975－1987． Report to the National Assessment of Vocational Education，Washington，DC．
${ }^{5}$ Source：Westat，Inc．（1988，May）．Preliminary tabulutions：Nation at risk update study us part of the 1987 high school transcript study． Report for the U．S．Dept．of Education，Center for Education Statistics．Rockville，MD：Author．
${ }^{6}$ Research reported in this paper．Source：Censortium for Policy Research in Educiation，University of Wisconsin－Madison， 1991.

The previous section discussed growth in science in the total sample. Tables 4, 5, and 6 present data on changes in credits during the 1980s disaggregated by states ( $n=4$ ), districts ( $n=9$ ), and schools ( $n=16$ ).

Various patterns can be icuugnized in these tables; but the only pattern which holds throughout the total sample is science, where statistically significant growth occurs in every state, district, and school. The universality of growth in science credits is further evidence of an impact of the science requirements in these states, which are high relative to both previous requirements and previous course-taking.

Table 4
Changes in average credits per student by 4 states and 8 subjects, 1982-88

|  | \% \% \% \% \% \% \% \% |  |  |  |  |  | §\%in\%***紋 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CA | . 18 | .84* | -.75* | . 33 | .58* | . 18 | -.63* | .22* |
| FL | .32* | 1.10* | . 45 | . 23 | -. 13 | .77* | -. 10 | .38* |
| MO | .38* | 1.02* | -. 01 | -. 23 | . 29 | . 22 | -. 25 | -.27* |
| PA | .61* | .77* | .92* | . 32 | -. 09 | .67* | .40* | .72* |

Takle 5
Changes in average credits per student by 9 districts and 8 subjects, 1982-88

|  | $\sum_{i} \operatorname{Sin}_{i}$ | \% \% \% | \% \% 4 \% | I. | \% ${ }^{\text {\% }}$ | H\%eks | \% 4 \% | So4S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 (urban) | . 23 | .84* | -. 36 | . 48 | .85* | .42* | -.63* | .35* |
| 2 (rural/suburban) | . 23 | .94* | -. 37 | . 26 | . 32 | -. 32 | -.75* | -. 01 |
| 3 (urban) | -. 05 | .71* | $-2.10^{*}$ | . 04 | . 28 | . 26 | -. 49 | . 17 |
| 4 (urban) | .50* | 1.17* | . 13 | . 42 | . 03 | .58* | -.89* | .38* |
| 5 (rural) | . 13 | 1.01* | . 81 | . 04 | -. 29 | .97* | . 71 | . 38 |
| 6 (suburban) | . 18 | 1.22* | . 55 | -. 41 | -. 04 | . 41 | -.43* | -.38* |
| 7 (urban) | .54* | .87* | -. 54 | -. 08 | .60* | -. 01 | -. 11 | -. 20 |
| 8 (urban) | 1.27* | .85* | 1.70* | . 62 | .46* | 1.01* | 1.02* | 1.10* |
| 9 (urban) | -.08 | .66* | . 13 | -. 02 | -.66* | . 30 | -. 23 | . 30 |

[^4]
## Table 6

Changes in average credits per student by 16 high schools and 8 subjects, 1982-88

| Injus sarom | IN: | s\% | \%. l | \% 4 \% | S.f. | Wersis | \% | Sos. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 57 | .87* | -. 31 | . 66 | .74* | . 17 | -.90* | . 14 |
| 2 | -. 12 | .83* | -. 45 | . 32 | .92* | .75* | -. 27 | .55* |
| 3 | . 23 | .94* | -. 37 | . 26 | . 32 | -. 32 | -.75* | -. 01 |
| 4 | -. 05 | .71* | -2.10* | . 04 | . 28 | . 26 | -. 49 | . 17 |
| 5 | . 25 | .81* | -. 08 | . 29 | -. 01 | .62* | -. 84 | . 20 |
| 6 | .72* | 1.49* | . 34 | . 53 | . 06 | .53* | -.97* | .52* |
| 7 | -. 06 | .76* | -. 27 | -. 08 | -. 12 | 1.10* | 1.46* | .68* |
| 8 | . 32 | 1.26* | 1.88* | . 16 | -. 46 | .84* | -. 04 | . 08 |
| 9 | .58* | 1.44* | . 54 | -. 54 | -. 50 | . 09 | -. 32 | -.68* |
| 10 | -. 18 | 1.02* | . 57 | -. 30 | . 39 | .70* | -.52* | -. 10 |
| 11 | .51* | 1.05* | -1.27* | . 37 | .88* | -. 21 | -. 08 | -. 26 |
| 12 | .57* | .69* | . 21 | -. 52 | . 31 | . 18 | -. 15 | -. 14 |
| 13 | 1.00* | 1.20* | 1.83* | . 94 | . 04 | .84* | . 63 | 1.14* |
| 14 | 1.53* | .50* | 1.55* | . 33 | . 87 | 1.17* | 1.39* | 1.06* |
| 15 | -. 01 | .70* | . 56 | . 12 | -. 10 | . 23 | . 50 | . 12 |
| 16 | -. 15 | .60* | -. 33 | -. 17 | 1.23* | . 39 | -.98* | .49* |

Conclusion \#5: In mathematics, our national sample started and ended higher than the national averages; but this national trend obscures larger gains in certain urban districts.

Table 3 presents somewhat of a puzzle in the area of mathematics. The CPRE sample of low-achieving schools started and ended higher than the national averages, while posting a slightly lower than average gain. On the basis of Table 3, one might say that the national trend is toward $3+$ credits in math, regardless of state graduation requirements.

But the national (pooled) data obscure an important pattern at the district level. Table 5 reveals that all statistically significant gains in mathematics occurred in three urban

[^5]districts (half of the six urban districts in the sample): District 4 in Florida (gain=.50); District 7 in Pennsylvania (gain=.54); and District 8 in Missouri (gain=1.27).

Gains of this size are meaningful from the perspective of instructional time. The ?ower gains of around . 50 credits represent an additional half year of instruction; while the gain of 1.27 in the Missouri district reflects more than an extra year of math. If these trends are typical of the nation, they may help explain gains in math achievement by minority youth in the 1980s. And our sample may be more typical than it seems. The largest district gain occurred in a state with a fairly typical math requirement (Missouri, with a 2 -credit math requirement). This is one bit of evidence among many in our study that the state requirements are only one of many influences on course-taking in the high school curriculum.

Conclusion \#6: The decline of vocational credits predicted by some observers did not occur, except in certain states, districts, and schools. Thus, whether vocational education declined, and played a role in financing the gains for othe- subjects, appears to be a matter of local variation and, probably, a deliberate policy choice at the state, district, or school level.

Table 3 shows basically a pattern of no change in vocational course-taking during the 1980s in any of the three samples. Table 6 shows that 2 of our 16 schools made statistically significant and large declines in vocational education during the decade; but 3 schools experienced even larger statistically significant gains.

The finding of no decline in vocational credits initially seems contrary to previous CPRE work (see Clune, 1989, and Hanson, 1989, which found significant declines in vocational course-taking). However, on cinser inspection of states and districts, the apparent contradiction is resolved. California (Table 4), showed a significant decline in vocational credits, 1982-88 (-.75). District 3 in Florida (Table 5) her by far the largest decline in vocational credits of any district in the country ( -2.10 ). Furthermore, the decline in vocational credits of .44 in Florida's District 4 during the imsizdiate postreform period is closely similar to the -.38 found by the previous research for this Florida district (Clune, 1989). ${ }^{9}$ Thus, California and particular districts in Florida showed declines in vocational education in both the present and earlier research (Clune, 1989; Hanson, 1989).

If the results in our sample are at all typical, they indicate that vocational education experienced substantial declines in selected states, districts, and schools; but suffered no change, or actually gained, in other locations. See, for example, the gain of almost 1

[^6]credit in Pennsylvania (Table 4), a state which increased its vocational requirement along with the requirements in academic subjects. ${ }^{10}$ Thus, whether vocational education declined, and played a role in "financing" the gains for other subjects, appears to be a matter of local variation and, probably, a deliberate policy choice at the state, district, or school level.

> Conclusion \#7: The evidence for a strong independent effect of state graduation requirements is weak; rather, such requirements seem to be one or many influences affecting high school course-taking.

To this point in the paper, we have mostly reported on changes of various kinds without focussing on the origins of those changes. Since our sample was chosen to include states with high state graduation requirements, we can ask what is the evidence of the effect of those requirements.

The main comparison we introduced to test the effect of the requirements was the inclusion of pre- and post-requirement data points, reflected in Table 1. The largest change in the total sample was in science, which does correspond to the unusually high science requirements in our states and the typical pattern, nationwide, of lower initial course-taking in this subject. However, the total change of .95 credits was split about equally between pre- and post-reform (.43/.52) (see also Goertz, 1989, for evidence of increased course-taking both pre- and post-reform). Of course, districts and schools may have been anticipating the new state requirements, many of which were adopted, though not binding, prior to 1985. (See Clune, 1989, for qualitative evidence of district anticipation; and see Fuhrman \& Elmore, 1920, on the idea that state and district policy making both increased during the 1980s). English and foreign language also show distinct pre-requirement gains. A theory of anticipation is even more necessary in math, where practically all of the total change during the decade occurred in the pre-reform period. On the other hand, we reported above that all of the districts with statistically significant gains in math were urban districts, suggesting a possible selective impact of the math requirements among students who previously took fewer math courses.

Requirement effects are not particularly supported by the comparison of our sample with the nation in Table 3, except for some difference in science and foreign languages (see above discussions). Comparison of states within our sample also are inconclusive (Table 4). Florida, a high-change state with the 3 -credit science requirement, posted the largest gain in science; but the second largest gain occurred in a state, Missouri, with a nationally more typical requirement of 2 science credits.

[^7]All of this suggests that changes in high school course-taking are subject to many different influences (for example, not simply state high school graduation requirements, but the requirements of the district, entrance requirements of state universities, and, to some extent, the requirements of univorsities in other states). Whether state requirements have an independent effect probably depends on whether districts, schools, and students have already responded to these other influences (e.g., students choosing more academics in response to university entrance requirements ard national trends).

Conclusion \#8: The additional academic credits added in our low-achieving schools during the 1980s were at various levels of difficulty. In science, courses were added mostly at the basic level (e.g., Earth Science) but also at the middle level (e.g., Biology I). In math, remedial courses like General Math lost ground, in favor of middle-level courses like Pre-Algebra and Algebra I. Most of the growth in English was at middle and advanced levels. Thus, while the additions were not at the high levels of a college preparatory curriculum, they were not remedial courses either. Research suggests a meaningful impact on student achievement from such course-taking.

Earlier research suggested that courses added by lower-achieving $s$ chools in response to the new graduation requirements were mostly at the basic and general level (Clune, 1989). This research was designed partly to provide more systematic information on the leve! of difficulty of the new courses.

To give the reader an under inding of what is meint by basic, middle and advanced levels of each subjeci, Table 7 gives the percent of enrollment in our sample for each level of each subject and also lists the highest enrollment courses for each level. As explained above in the methodology section, level I (or grade 9) courses are classified as basic, except for math and science, which have substantial remedial courses offered at the high school level. Note that there is nothing in our analysis which requires equivalence of levels across subjects (e.g., basic math somehow equal to basic English). Our main purpose was to record changes of levels within subjects with a roughly common vocabulary. Also, in some subjects higher-level courses may not be much more difficult than lower ones (e.g., U.S. History 2 versus U.S. History 1). Indet:, the SST system is probably most sensitive to level of difficulty in math, science, and vocational education. Of course, the regular sequence (I, II, III, etc.) in foreign language also is a good measure of level of difficulty.

## Table 7

Highest earollment courses, percent earolled in these courses, and percent of credits in each level of difficulty by subject for the total sample in 1988

TOTAL SAMPLE

| sutses |  |  <br>  |
| :---: | :---: | :---: |
| MATH |  | \% of basic, middile, or advanced leval Math credits (of all Math) |
| Basic Math | General Math 1 (27\%) <br> General Math 2 (25\%) | 27\% |
| Middle Math | Pro-Algebra (33\%) <br> Consumer Math (25\%) | 25\% |
| Advanced Math | Algebra (66\%) <br> Geometry (37\%) | 48\% |
| SCIENCE |  | \% of basic, middle or advanced level Science credits (of all Science) |
| Basic Science | Intro. to Science (48\%) <br> Fund. Phys. Sci. (42\%) <br> Earth Science ( $\angle, 2$ \%) | 52\% |
| Middle Science | General Biology (55\%) Chemistry 1 (29\%) | 31\% |
| Advanced Science | Anatomy \& Physiology, Honors (12\%) <br> Advanced Placement Biology (11\%) | 16\% |
| VOCATIONAL |  | \% of basic, middle or advanced level Vocational credits (of all Vocational) |
| Basic Vocational | Typing 1 (59\%) <br> Basic Business 1 (21\%) <br> Computer Programming 1 (21\%) | 87\% |
| Middle Vocational | Typing 2 (12\%) | 11\% |
| Advanced Vocational | Marketing and Distrib. (2\%) | 1.7\% |

Table 7 (cont'd)

|  |  |  <br>  |
| :---: | :---: | :---: |
| ART |  | \% of basic, middle or advanced level Art credit3 (of all Art) |
| Basic Art | $\begin{aligned} & \text { Art } 9 \text { (19\%) } \\ & \text {-tcting } 1 \text { (14\%) } \\ & \text { Chorus } 1 \text { (12\%) } \end{aligned}$ | 81\% |
| Midale At | Chorus II (41\%) | 12\% |
| Advenced Art | Adv.Plecement Dance (2\%) Music 3 (2\%) | 7.2\% |
| ENGLISX |  | \% of basic, middle or advanced level English credits (of all English) |
| Basic English | English 9 (71\%) Besic English (21\%) | 45\% |
| Middle English | English 10 (67\%) | 25\% |
| Advanced English | English 11 (53\%) <br> English 12 (47\%) | 29\% |
| FOREIGN LANGUAGE |  | \% of basic, middle or advanced level F. Language credits (of all F. Language) |
| Basic Foreign Language | Spanish I (46\%) <br> Freach I (16\%) | 59\% |
| Middle F. Language | Spanish II (26\%) <br> French II (9\%) | 32\% |
| Advanced F. Lenguage | Spanish III (5\%) | 9.7\% |
| PFRSONAL SKILLS |  | \% of besic, middle, or advanced level Personal Skills credits (of all Personal Skills) |
| Basic Personal Skills | Phy. Ed. (98\%) <br> Health Ed. 1 ( 51 \%) <br> Driver Ed., Theory (24\%) | 87\% |
| Middle Personal Skills | Health Ed. 2 (16\%) | 5.8\% |
| Advanced Personal Skills | Phy. Ed. 3 (6\%) | .52\% |

Table 7 (cont'd)

| sat:s. |  |  <br>  |
| :---: | :---: | :---: |
| SOCIAL STUDIES |  | \% of basic, middle and advanced level Social Studies credits (of all Social Studies) |
| Basic Social Sundies | World History 1 (87\%) U.S. History 1 (56\%) | 87\% |
| Middle Social Studies | U.S. History 2 (23\%) | 7.5\% |
| Advanced Social Studies | World History, Honors (4\%) | 3.8\% |

Table 8 treaks down gains and losses in average credits per student, 1982-88, by schoos and subject, into three levels of difficulty (basic, middle, and advanced) (see Appendix D for full course list). Because of its complexity, we condensed the information in Table 8 into Table 9 , which is a simple count of the number of schools experiencing statisticaily significant changes in 3 levels of the 8 subjects.

## Table 8

Changes in average credits per student in basic, middle, and advanced levels of 8 subjects, 1982-88, by 16 schools

| Lemeks | M, mik | sa | \%. | at: | Em: | Fester | Psss | sms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIC LEVEL |  |  |  |  |  |  |  |  |
| CALIFORNIA |  |  |  |  |  |  |  |  |
| School 1, District 1 | - 12 | .51* | -. 07 | .80* | .78* | . 22 | -1.06* | . 14 |
| School 2, District 2 | -.58* | . 05 | -. 57 | . 48 | . 48 | .38* | -. 29 | .55* |
| School 3, District 2 | -. 14 | .72* | -. 60 | . 13 | . 19 | -. 16 | -.86* | -. 02 |
| School 4, District 3 | -1.23* | .92* | -1.49* | -.89* | -1.02* | -. 06 | -. 04 | . 29 |
| FLORIDA |  |  |  |  |  |  |  |  |
| School 5, District 4 | . 02 | . 34 | . 29 | . 41 | -1.53* | . 28 | . 25 | . 24 |
| School 6, District 4 | -.78* | 1.11* | . 07 | . 43 | -.51* | . 22 | -.71* | . 00 |
| School 7, District 5 | -. 26 | .56* | -. 59 | -. 22 | -1.06* | .66* | 1.20* | . 32 |
| School 8, District 5 | -.98* | .70* | 1.50* | . 28 | -.50* | .48* | -.86* | . 20 |

## Table. 8 (cont'd)

| ¢ | Ment | ¢ 4 | \% | \%) | Ext | Fskt | \%sse | s.s.s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIC LEVEL (cont'd) |  |  |  |  |  |  |  |  |
| MISSOURI |  |  |  |  |  |  |  |  |
| School 9, District 6 | -. 13 | .64* | . 26 | -1.01* | -. 47 | . 19 | -.22* | $1.29^{\circ}$ |
| School 10, District 6 | -.52* | .50* | . 27 | -.74* | . 31 | .45* | -.77* | -.55* |
| School 11, District 7 | . 27 | .68* | -1.12* | . 22 | -. 44 | -. 21 | -. 19 | -.26* |
| School 12, District '; | -. 27 | . 25 | . 09 | -. 54 | -. 16 | . 12 | -. 11 | -. 14 |
| PENNSYLVANIA |  |  |  |  |  |  |  |  |
| School 13, District 8 | . 04 | . 04 | 1.17* | 1.00 | -1.16* | .44* | .66* | -. 06 |
| School 14, District 8 | . 05 | -. 04 | 1.14* | . 10 | .39* | . 30 | 1.49* | -. 09 |
| School 15, District 9 | -. 06 | .52* | . 40 | . 21 | -. 64 | . 20 | .65* | . 04 |
| Sr ol 16, District 9 | -.62* | .60* | . 23 | -. 04 | -. 56 | . 27 | -1.12* | . 37 |
| MIDDLE LEVEL |  |  |  |  |  |  |  |  |
| CALIFORNIA |  |  |  |  |  |  |  |  |
| School 1, District 1 | .77* | . 03 | -. 07 | -. 09 | .35* | -. 06 | . 00 | . 00 |
| School 2, District 2 | .37* | .55* | -. 03 | -. 16 | . 08 | .31* | . 00 | . 00 |
| School 3, District 2 | .53* | . 02 | . 32 | .21* | . 07 | -. 09 | . 00 | . 00 |
| School 4, District 3 | .53* | -. 33 | -. 46 | .60* | .73* | . 26 | -. 12 | -. 02 |
| FLORIDA |  |  |  |  |  |  |  |  |
| School 5, District 4 | -. 45 | . 18 | -. 37 | -. 08 | 1.00* | .16* | -. 18 | -.44* |
| School 6, District 4 | .71* | -. 03 | . 13 | -. 04 | -. 35 | .29* | . 00 | . 01 |
| School 7, District 5 | -. 26 | . 20 | . 14 | . 06 | -. 20 | . 44 | 1.06* | .40* |
| School 8, District 5 | .70* | . 20 | . 34 | -. 16 | -.44* | . 36 | .74* | .44* |
| MISSOURI |  |  |  |  |  |  |  |  |
| School 9, District 6 | . 15 | . 39 | . 41 | . 39 | -. 28 | . 03 | . 06 | . 12 |
| School 10, District 6 | . 04 | . 37 | . 37 | . 15 | . 03 | . 05 | -. 10 | -. 02 |
| School 11, District 7 | .71* | -. 06 | -. 01 | . 05 | .42* | . 00 | . 18 | . 00 |
| School 12, District 7 | -. 03 | . 32 | . 05 | . 02 | -. 02 | . 06 | -. 06 | -. 14 |

Table 8 (cont'd)

|  | Mma | Sck | Ys\%s. | Atis | E*) | Frat | T: | Smes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulditat LEVEL (cont'd) |  |  |  |  |  |  |  |  |
| PENNSYLVANIA |  |  |  |  |  |  |  |  |
| School 13, District 8 | .40* | .44* | .64* | -. 06 | .40* | .32* | . 00 | .88* |
| School 14, District 3 | . 27 | .77* | . 34 | . 12 | .27* | . 30 | . 00 | 1.08* |
| School 15, District 9 | -. 03 | . 34 | . 26 | -. 20 | . 05 | -. 02 | $\cdots .12$ | . 00 |
| School 16, District 9 | . 08 | . 00 | . 14 | -. 11 | -. 25 | . 12 | -. 02 | . 00 |
| ADVANCED LEVKI |  |  |  |  |  |  |  |  |
| CALIFORNIA |  |  |  |  |  |  |  |  |
| School 1, District 1 | -. 08 | .33* | -. 17 | -. 06 | -. 42 | . 01 | . 00 | . 00 |
| School 2, District 2 | . 09 | .24* | . 15 | . 00 | .36* | . 06 | . 00 | . 00 |
| School 3, District 2 | -. 16 | .21* | . 09 | -. 08 | -.24* | -. 08 | .43* | . 02 |
| School 4, District 3 | .69* | . 00 | -. 14 | . 29 | .51* | . 06 | -. 08 | -. 12 |
| FLORDA |  |  |  |  |  |  |  |  |
| School 5, District 4 | . 68 | . 29 | . 00 | -. 04 | .52* | . 08 | . 02 | . 30 |
| School 6, District 4 | . 63 | . 42 | . 14 | . 14 | 1.01* | . 02 | . 10 | . 52 |
| School 7, District 5 | . 42 | . 00 | . 18 | . 08 | .644 | . 00 | -. 20 | . 00 |
| School 8, District 5 | . 40 | . 28 | . 00 | . 04 | .48* | . 00 | $\cdots$ | . 00 |
| MISSOURI |  |  |  |  |  |  |  |  |
| School 9, District 6 | . 42 | . 31 | -. 37 | . 08 | -. 13 | -. 13 | -.24* | . 00 |
| School 10, District 6 | . 23 | . 16 | -. 07 | . 29 | . 05 | .20* | . 37 | . 02 |
| School 11, District 7 | -.47 | .43* | . 00 | . 10 | .90* | . 00 | . 02 | . 00 |
| School 12, District 7 | .86* | . 12 | . 07 | . 00 | .49* | . 00 | . 00 | . 00 |
| PENNSYLVANTA |  |  |  |  |  |  |  |  |
| School 13, District 8 | . 56 | .72* | . 02 | . 00 | .80* | . 08 | . 00 | . 10 |
| School 14, District 8 | 1.20* | -. 22 | . 08 | . 12 | . 16 | .58* | . 00 | . 07 |
| School 15, District 9 | . 08 | -. 16 | -. 10 | . 11 | .49* | . 05 | -. 02 | . 02 |
| School 16, District 9 | . 39 | . 00 | -. 25 | -. 02 | -.43* | . 00 | . 00 | . 12 |

## Table 9

Numher of Schools ( $\mathrm{n}=16$ ) from Table 8 with statistically significant changes in average credits per student, 1982-88, in basic, middile, and advanced leve! ; of 8 subjects

|  | Hasher | B\%\% | Videcas | (tansw | \% \% | M4xk |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Math | 0 | 6 | 8 | 0 | 3 | 0 |
| Science | 11 | 0 | 3 | 0 | 5 | 0 |
| Voc | 3 | 2 | 1 | 0 | 0 | 0 |
| Art | 1 | 3 | 2 | 0 | 0 | 0 |
| Eng | 2 | 6 | 6 | 1 | 10 | 2 |
| ForL | 5 | 0 | 4 | 0 | 2 | 0 |
| Perss | 4 | 7 | 2 | 0 | 1 | 2 |
| Sows | 1 | 3 | 4 | 1 | 0 | 0 |
| Total | 27 | 27 | 30 | 2 | 21 | 4 |

The fundamental pattern revealed by Table 9 actually is fairly clear. No schools lost credits in science courses at any level, with the greatest number of schools adding credits at the basic and advanced levels. In math, 6 schocls lost basic credits, while 8 schools gained in the middle level. Englisin has the most advanced profile, with a predominance of schools losing basic credits and a substantial numbar of schools adding both middle and advanced credits. The total of 10 schools adding advanced English is only one less than the 11 schools adding basic science. Looking across all subjects (the total column), the numher of schools adding basic credits was equal to the number losing basic credits, while schools adding middle and advanced credits considerably outnumber those losing such credits. To summarize, the overall trend in our low achieving schools during the 1980s was an upward shift in le el of difficulty. By this measure, fears of watering down of courses to meet the new requirements are not justified.

The advantage of the SST system is that it allows classification of all courses into levels of difficulty. However, to get a picture of particular courses which may have contributed to the trends, we computed the courses which increased or decreased by $10 \%$ or more in percent of students enrolled during the 1980s. The results for the totai sample are reported in Tables 10 \& 11.

## Table 10

Perceat enrollment change and percent of studeats enrolled in math, science and vocational courses with a difference of $10 \%$ or more in percent of enrollment between 1982 and 1988

| Total Sample | Percent Change | Percent Enrollment |  |
| :---: | :---: | :---: | :---: |
|  | (difference in percent) 1982-88 | 1982 | 1988 |
| Math |  |  |  |
| Pre-Algebra (middle) | 15\% | 18\% | 33\% |
| Conputer Literacy (middle) | 12\% | 3\% | 15\% |
| Basic Geometry (advanced) | 11\% | 25\% | 37\% |
| Algsbra I (advanced) | 10\% | 56\% | 66\% |
| General Math 1 (basic) | -12\% | 39\% | 27\% |
| Basic Math (basic) | -18\% | 30\% | 12\% |
| Science |  |  |  |
| Fundamental Physical Sci. (basic) | 30\% | 12\% | 42\% |
| Earth Science (basic) | 14\% | 15\% | 29\% |
| Chemistry I (middle) | 13\% | 16\% | 29\% |
| Vocational |  |  |  |
| Computer Progranming I (basic) | 15\% | 6\% | 21\% |

## Teble 11

Perceat enrollment chagge and percent of students enroiled in art, foreign languages, personal akills, and social studies courses with a difference of $10 \%$ or more in percent of enrollment between 1982 and 1988

|  | Perceat Change <br> Total Sample | Percent Enn | ath |
| :--- | :--- | :--- | :--- |
| (difference in | 1988 | 1988 |  |

Ant
No courses changed by 10\% or more.

| English |  |  |  |
| :---: | :---: | :---: | :---: |
| English 11 (advanced) | 12\% | 41\% | 53\% |
| Reading Development 1 (basic) | -13\% | 25\% | 12\% |
| Foreipa Lamguage |  |  |  |
| Spanish 1 (basic) | 24\% | 22\% | 46\% |
| Spanish 2 (middle) | 16\% | 10\% | 26\% |
| Foreign Lenguage, Exploratory (basic) | -16\% | 16\% | 0\% |
| Personal Skills |  |  |  |
| Health Education 1 (basic) | 26\% | 25\% | 51\% |
| student Assistant (basic) | -12\% | 23\% | 11\% |
| Driver Education, Classroom (basic) | -13\% | 37\% | 24\% |
| Socinl Studies |  |  |  |
| World History (basic) | 37\% | 50\% | 87\% |
| Intro. to Ecology (basic) | 18\% | 3\% | 21\% |
| Basic American Governmeat (basic) | 14\% | 28\% | 42\% |
| Economics 2 (middle) | 14\% | 0\% | 14\% |
| American Government (basic) | 12\% | 5\% | 17\% |
| Early WYorld History (basic) | 11\% | 0\% | 11\% |
| Citizenship (besic) | 10\% | 14\% | 24\% |
| U.S. History 1 (basic) | -13\% | 39\% | 26\% |
| Intro. to Social Studies (basic) | -20\% | 38\% | 18\% |

Math courses showing gains and classified as middle were Pre-Algebra and Computer Literacy. Advanced gaining math courses were Basic Geometry and Algebra I. General Math and Basic Math lost enrollments. Basic science gainers were Physical Science and Earth Science. Chemistry I, a gainer, is classified as middle. In English, Reading Development lost, while Eiglish 11 (the third course in the sequence) gained. Spanish 1 and 2 were the big gainers in foreign language. In social studies, the most notable urend is the gain in basic World History (actually being taken by $87 \%$ of all the students in our sample in 1988).

Overall, these trends show schools becoming distinctly more academic without reaching the higher levels of a college preparatory curriculum. Basic and remedial courses lost in favor of courses which typically begin the curriculum for college prep students. Gains in these beginning academic courses are a. $: 2$ meaningful, because of their effects on student achievement. Meyer (1988) has found, for example, that Pre-Algebra, a gainer in our sample, has a much bigger "kick" on math achievement tests than General Math, a loser in our sample. Once again, changes in the course-taking of these lower-achieving students is consistent with achievement gains reported in the 1980s for mincrities and the poor (although we cannot tell whether the new courses were taken in time by these students to be reflected on the 12th grade National Assessment).

Conclusion \#9: While the trend in the schools in our sample was toward a more academic curriculum, the schools were still less academic than national averages in 1988, as measured by percent of all students enrolled in the usual college preparatory courses in math and science. Thus, allowing for problems with the data, the similarity of our schools to national averages in terms of total credits and credits by subject conceals meaningful differences in difficulty of courses within these subjects.

The data in the last section about a trend toward more academic courses raises the question of exactly how academic these lower-achieving, heavily urban, schools had become by 1988. We were unable to find national data classified a-cording to the SST matching our time periods, but we did patch together a comparison of our total sample and state data with state-by-state data on enrollments in key main and science courses in 1988 put together for the Chief State School Officers (Blank \& Dalkilic, 1990). The results are reported in Tables $12 \& 13$.

Table 12

Percent of students earolled in 3 key academic math courses, in 4 states, at the end of the 1980s. Date drawn from this CPRE study and a CCSSO study by Blank and Dalkilic (1990)


[^8]Table 13
Percent of students earolled in 3 key academic science courses, in 4 at tes, at the end of the 1980s. Data drawn from this CPRE study and a CCSSO study by Blank \& Dalkilic (1990)

| \%.W. | Censogisyy | apre(488) |
| :---: | :---: | :---: |
| Basic and General Biology ${ }^{14}$ |  |  |
| CA | 97\% | 95\% |
| FL | 100\% | 89\% |
| MO | 86\% | 69\% |
| PA | 100\% | 96\% |
| Total | 99\% (U.S. total) | 87\% (total sample) |
| Chemistry I |  |  |
| CA | 34\% | 30\% |
| FL | 44\% | 29\% |
| MO | 41\% | 26\% |
| PA | 56\% | 29\% |
| Total | 45\% (U.S. total) | 30\% (total sample) |
| Physics I |  |  |
| CA | 16\% | 6\% |
| FL | 19\% | 1\% |
| MO | 16\% | 0\% |
| PA | 29\% | 1\% |
| Total | 20\% (U.S. total) | 4\% (total sample) |

Looking at the CCSSO national figures compared with our total sample in math shows differences favoring the national sample of $15 \%$ in Algebra I ( $81 \%$ U.S.

[^9]enrollment minus 66\% in our sample), $26 \%$ in Algebra 2 (49\%-23\%), and 7\% in Calculus (9\%-2\%, better than a 4 to 1 ratio). In science, the equivalent differences are 12\% in Basic and General Biology (99\%-87\%), 15\% in Chemistry I ( $45 \%-30 \%$ ), and 16\% in Physics I (20\% - 4\%, a 5 to 1 ratio).

Some caution must be used in accepting these conclusions because of the differences in the data sources. Our data include only completed credits, while the CCSSO data are based on enrollments. The CCSSO data for Algebra 1 include 8th grade, while ours include only high school. Furthermore, the comparison of single courses may be seriously misleading. For example, 33\% of the students in our sample took Pre-Algebra, a course with considerable overlap with Algebra I.

Nevertheless, the differences, particularly in more advanced courses, are large; and the pattern in our schools is about what might be expected for students predominantly outside the college preparatory track. Our students, especially in selected states, come close to statistical averages in the early science courses of biology and chemistry-further evidence of the strong trend toward increased science course-taking and the impact of the high science requirements. In general, though, the similarity of our schools to the national averages in terms of credits by subject probably conceals substantial differences in level of courses within the subjects.

Conclusion \#10: Suurse-taking trends in our sample of 9th graders (including nongraduating students) indicate only a slight possibility of greater dropping out. Ninth-grade students beginning school in 1981 (subject to the old graduation requirements) earned about the same number of credits as 9 th graders beginning in 1983 (subject to the new requirements). On average, the second cohort had slightly fewer students making it to 12 th grade and slightly more students who withdrew in 9th grade. These figures are difficult to interpret because of the smail differences and the possible role of student mobility in reducing time at any one school. Of greater interest is the extreme variation across schools in how long the average student stays at the school. In some schools, practically all students make it to 12th grade; in others, about half; and, in a few schools, practically no students starting 9th crade make it to 12th grade in that high school.

One of the questions frequently raised about high school graduation requirements is whether they would cause students unable to meet the standards to drop out (Cusick, 1984; McDill, Natriello \& Pallas, 1985). Previous research from this project cast doubt on that proposition, suggesting that students may respond positively to higher standards, or, alternatively, that higher formal standards result in watering down of courses and extensive remediation (Bryk \& Thum, 1989; Patterson, 1990).

The sample of high school graduates discussed to this point in the paper is, of course, useless as a measure of how many students stayed in high school, because we had no idea how representative the graduates were of the school as a whole. In order to provide some measure of staying in high school, we collected our "9th grade sample"-random samples of the transcripts of approximately 50 students who began 9th grade at each school at two points in time derigned to be pre- and post-reform. Let us call these the "first cohort" and the "second cohort." These transcripts reflected the coursetaking of each cohost and whether the student withdrew; but did not reliably indicate whether the student dropped out or transferred to another high school. Tracking withdrawing students, determining their educational fortunes, and classifying these outcomes is, in fact, a major problem in calculating dropout rates (Williams, 1987).

Table 14 shows the average credits per student, number of students reaching 12th grade (i.e., st:owing at least some 12 th grade credits), and number of students withdrawing before completing 9th grade for each of 16 high schools for each cohort.

Table 14
Completion Rate for the Grade 9 Cohorts
Average crodits per student, rumber of students reaching 12th grade (i.e., showing at least some 12 th grade credits), and number of students withdrawing in 9 th grade from each of 16 high schools, for the 1981 \& 1983 grade cohorts ${ }^{15}$.

| U5: sansis |  |  |  |  |  <br> h <br>  $\dot{\sin } \dot{2}$ <br>  4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.96 | 8.36 | 20 | 17 | 7 | 9 |
| 2 | 11.70 | 12.14 | 27 | 18 | 8 | 5 |
| 3 | 14.15 | 12.39 | 31 | 23 | 4 | 1 |
| 4 | 18.57 | 13.14 | 33 | 16 | 1 | 3 |
| 5 | 18.05 | 20.42 | 33 | 32 | 4 | 10 |
| 6 | 14.38 | 15.20 | 23 | 29 | 12 | 10 |

[^10]|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 22.40 | 21.13 | 39 | 36 | 0 | 2 |
| 8 | 19.58 | 17.87 | 32 | 37 | 2 | 10 |
| 9 | 17.22 | 16.45 | 36 | 29 | 0 | 4 |
| 10 | 20.63 | 19.34 | 43 | 39 | 0 | 2 |
| 11 | 15.35 | 16.77 | 32 | 31 | 10 | 6 |
| 12 | 15.74 | 18.79 | 29 | 37 | 3 | 3 |
| 13 | 14.33 | 23.13 | 26 | 39 | 7 | 2 |
| 14 | 18.86 | 23.36 | 36 | 36 | 4 | 3 |
| 15 | 8.37 | 3.97 | 16 | 3 | 14 | 41 |
| 16 | 13.53 | 3.33 | 24 | 2 | 5 | 20 |
| TOTAL | 253.82 | 245.79 | 484.00 | 428.00 | 81.00 | 131.00 |
| MEAN | 15.86 | 15.36 | 30 | 27 | 5 | 8 |

These numbers do not reflect any major trend toward shorter times in high school. On average, the typical student (looking across high schools) earned a little more than 15 credits in each cohort (about $75 \%$ of a complete program). On average, students making it to 12 th grade declined from 30 to 27 (out of a total of approximately 50 ); students withdrawing in 9 th grade increased from 5 to 8.

But Table 14 is an example of where averages conceal valuable information about variation. By all measures, there is great variation across schools in how long students stayed. For example, in average credits, the 16 schools in the second cohort include 6 schools with the average student taking 19-23 credits (almost a complete program); 4 schools with 15-18 credits; 3 schools with 10-13 credits (half a program); and 3 schools with around $3-8$ credits.

In other words, in total range of credits, the sample included a handful of schools where practically everyone graduated and a couple (in the 1983 cchort) where pract:ally no one graduated. We would like to know what happened to these outlier schools 15 and 16, both urban schools in Pennsylvania, during the second cohort period; either we got a bad sample of transcripts or something catastrophic happened at these schools.

Even without the outliers, there is still a lot of variation from school to school in student mobility. This is perhaps not surprising in a sample including a wide variety of schools; but it does suggest that "low-achieving students" may not adequately capture all of the problems facing schools.

Conclusion \#11: The level of difficulty of courses taken by the 9 th grade cohorts (including non-graduating students) did not decline after passafe of the new requirements; thus, "watering down" in the sense of taking easier courses in the same subject did not seem to occur.

This paper has already discussed the fact that the level of difficulty of courses for graduating seniors actually increased somewhat during the 1980s (Conclusion 8). Here we ask about the level of courses for the 9 th grade cohorts, including students who may not have graduated. Were such students increasingly placed in remedial-type courses? The answer provided by Tables 15 and 16 appears to be, no.

Table 15
Average credits per student in math, science, and vocational for 1981 and 1983 grade 9 cohorts


Table 16

Average credits per student in art, English, foreign language, personal skills, and social studies for 1981 and 1983 grade 9 cohorts

| yerel | Av. cmins us\% | \%M. Cumingsil | ISicsess |
| :---: | :---: | :---: | :---: |
| Basic Ast | 0.86 | 0.88 | . 02 |
| $\mathrm{N}=$ | 507 | 543 |  |
| Middle Art | 0.12 | 0.13 | . 01 |
| $\mathrm{N}=$ | 96 | 100 |  |
| Advanced Art | 0.07 | 0.08 | . 01 |
| $\mathrm{N}=$ | 59 | 59 |  |
| Basic English | 1.57 | 1.31 | -.25* |
| $\mathrm{N}=$ | 760 | 777 |  |
| Middle English | 0.68 | 0.70 | . 02 |
| $\mathrm{N}=$ | 565 | 525 |  |
| Advanced English | 0.63 | 0.67 | . 04 |
| $\mathrm{N}=$ | 402 | 389 |  |
| Basic Foreign Lenguage | 0.30 | 0.36 | .05* |
| $\mathrm{N}=$ | 289 | 337 |  |
| Middle Foreign Language | 0.11 | 0.17 | .05* |
| $\mathbf{N}=$ | 103 | 147 |  |
| Advanced Forcign Language | 0.04 | 0.06 | . 02 |
| $\mathrm{N}=$ | 37 | 41 |  |
| Basic Personal Skills | 2.12 | 1.92 | -.21* |
| $\mathrm{N}=$ | 809 | 790 |  |
| Middle Personal Skills | 0.07 | 0.12 | .05* |
| $\mathrm{N}=$ | 70 | 111 |  |
| Advanced Personal Skills | 0.1 | 0.07 | -. 02 |
| $\mathrm{N}=$ | 74 | 54 |  |

Table 16 (cont'd)

|  | \%\% Crsirvisisi | \%u.s.rifitss\% | Hstis\% |
| :---: | :---: | :---: | :---: |
| Besic Socinl Studies | 2.095 | 1.98 | -. 11 |
| $\mathrm{N}=$ | 776 | 799 |  |
| Middle Social Studies | 0.07 | 0.18 | .11* |
| $\mathrm{N}=$ | 96 | 225 |  |
| Advanced Social Studies | 0.09 | 0.07 | -. 02 |
| $\mathrm{N}=$ | 52 | 52 |  |
| Total credits | 8.93 | 8.76 |  |
| Total students | 823 | 820 |  |
| Total increase |  |  | . 38 |
| Total decrease |  |  | -. 61 |
| Total credit change |  |  | -. 23 |

Tables 15 and 16 divide up the average credits per student for the entire sample of the 2 cohnrts of 9 th graders into basic, middle, and advanced levels of the 8 subjects. The " $81-83$ " column shows the changes, including statistical significance, from the first cohort to the second.

As can be seen from the tables, basically there were few, if any, sizeable changes. Statistically significant decreases occurred in basic level courses (science, English, and personal skills). A few middle level subjects increased (math, personal skills, social studies). Very small increases occurred in both basic and middle foreign languages. Thus, if there was any trend, it was a slight shift from basic to middle level courses.

## Conclusion

This study was designed to examine changes in course-taking among graduates of high schools enrolling mostly lower-achieving students in states adopting high graduation requirements during the 1980s. Those changes must be counted at least a moderate success. Average credits per student increased in all academic subjects; and the level of difficulty oi these courses also increased. Science was the biggest gainer of the 1980s, with growth primarily in beginning academic courses like Physical Science; Earth Science, and Chemistry I. In math, remedial courses like Basic Matin and General Math lost crudits, with gains in courses like Pre-Algebra and Algebra. The major gains in English were at the advanced level, especially in English 11.

Increaseu course-taking in academic subjects generally occurred as a result of increased total credits, rather than a shift from one subject to another. Judging by total credits, high school students were taking more courses by the end of the decade. Certain states and districts may have "financed" the gains through declines in vocational education; but vocational course-taking held steady in the sample as a whole.

Contrary to the concerns of some observers about possible negative effects of higher standards, a separate sample of 9th grade cohorts in the same schools (not necessarily high school graduates) beginning 9 th grade pre- and post-reform showed little evidence of reduced course work, higher rates of withdrawal from school, or lowered difficulty of course work. Thus, gains for the graduates did not seem to produce more failure for other students.

If the increased academic course-taking we observed was typical, it is likely to be reflected in increased academic achievement. Even at the end of the decade, the graduates of our lower-achieving, heavily urban, schools did not reach the averages in their states in percent of students enrolled in college preparatory courses. The most frequently added courses tended to be the ones at the beginning of the college prep sequence rather than the end. Nevertheless, such courses have been she wn by research (Gamoran, 1987; Meyer, 1988) to have a substantial "kick" on achievement tests (for example, both Pre-Algebra and Algebra I). Furthermore, the amount of extra course-taking was ineaningful-almost half a year more total credits, a year or more of extra science, half a year extra foreign language (most frequently Spanish), and a third of a year of extra math (half a year of extra math in the urban districts).

Evidence of an independent effect of the state graduation requirements is mixed and ambiguous. Course-taking in our high schools mostly resembled national averages both before and after reform. The strongest case for a reform effect was in science. Science requirements were highest relative to pre-existing course-taking, and science course-taking showed the largest and most consistent gains in our samples. Yet, in science, as with other subjects, substantial change occurred prior to reform. Reforms which lags, rather
than leads, social change is a common finding in social science. High school coursetaking also is regulated by multiple policies (e.g., university, district, and schooi requirements in addition to laws of the state). Apparently, in this as in other areas, we have been witnessing a genuine reform movement rather than a single powerful policy instrument (Fuhrman, Clune, \& Elmore, 1988; Fuhrman \& Elmore, 1990).

## References

Blank, R. K., \& D. Schilder. (1990). State policies and state role in curriculum. In S. H. Fuhrman \& B. Malen (Eds.), The Politics of Curriculum and Testing: The 1990 Yearbook of the Politics of the Education Association (pp. 37-62). Philadelphia: Falmer Press.

Blank, R. K., \& Dalkilic, M. (1990). State indicators of science and mathematics education: 1990. Washington, DC: Council of Chief State School Officers, State Education Assessment Center.

Brown, C., Gifford, A. G., Hoachlander, E. G., Mey'r, R. H., \& Tuma, J. E. (1989, February). The secondary schools taxonomy. Report prepared for the National Assessment of Vocational Education, U. S. Department cf Education, Washington, I)C.

Bryk, T., Lee, V., \& Smith, J. (1990). High school organization and its effects on teachers and students: An interpretive summary of the research. In W. H. Clune \& J. F. Witte (Eds.), Choice and control in American education: Volume 1 (pp. 135-226). Philadelnhia: Falmer Press.

Bryk, A. S., \& Thim, Y. M. (1989). The effects of high school organization on dropping out: An exploratory investigation (RR-012). New Brunswick, NJ: Rutgers University, Center for Policy Research in Education.

Clune, W. H. (with White, P., \& Patterson, J.). (1989). The implementation and effects of high school graduation requirements: First steps toward curriculum reform. New Brunswick, NJ: Rutgers University, Center for Policy Research in Education.

Cusick, P. A. (1984). The school reform movement's impact on school dropout and retention efforts. East Lansing, MI: Michigan State University.

Fuhrman, S. H. (1988). State politics and education reform. In J. Hannaway \& R. Crowson, Politics of reforming school administration (pp. 61-65). Philadelphia: Falmer Press.

Fuhrman, S., Clune, W. H., \& Elmore, R. F. (1988). Research on education reform. Teachers College Record, 90(2), 237-257.

Fuhrman, S. H., \& Elmore, R. F. (1990). Understanding local control in the wake of state education reform. Educational Evaluation and Policy Analysis, 12(1), 82-96.

Gamoran, A. (1987). The stratification of high school learnin! spportunities. Sociology of Education, 60, 135-155.

Gifford, A. G., Harde, D., Hoachlander, E. G., Meyer, R. H., \& Tuma, J. E. (1989, April). Course enrollment patterns in secondary schools: 1975-1987. Report to the National Assessment of Vocational Education, Washington, DC.

Goertz, M. (1986). State educational standards: A 50 state survey (Research Report 862). Princeton, NJ: Educational Testing Service.

Goertz, M. (1989, September). Course-taking patterns in the 1980s (Research Report Series RR-013). New Brunswick, NJ: Rutgers University, Center for Policy Research in Education.

Hanson, T. L. (1989, September). Curricular change in Dade County, 1982-83 to 198687: A replication of the PACE study (CPRE Research Report Series RR-014). New Brunswick, NJ: Rutgers University, Center for Policy Research in Education.

Jones, L. V., Davenport, E. C., Jr., Bryson, A., Bekhuis, T., \& 'Zwick, R. (1986). Mathematics and science test scores as related to courses taken in high school and other factors. Journal of Educational Measurement, 23(3), 197-208.

Koretz, D. (1988). The effects of coursework reform: Steps toward a sensitive and valid system of indicators. Paper prepared for the Rand Corporation, Washington, DC.
McDill, E., Natriello, G., \& Pallas, A. (1985). Raising standards and retaining students: The impact of the reform recommendations on potential dropouts (Report 358). Baltimore, MD: Johns Hopkins University Press, Center for Social Organization of Schools.

McDonnell, L. M. (1988). Coursework policy in five states and its implications for indicator development. Working paper prepared for The Rand Corporation, Santa Monica, California.

Meyer, R. H. (1988). The production of mathematics skills: Theory vs. application (revised, 1990). Discussion paper prepared for the Institute for Research on Poverty, University of Wisconsin-Madison.

Meyer, R. (1990). Beyond academic reform: The case for integrated applied and academic education. Discussion paper prepared for the Institute for Research on Poverty, University of Wisconsin-Madison.

National Center for Education Statistics. (1982). A classification of secondary school courses. Washington, DC: Author (ERIC Document Reproduction Service No. ED 217 579).

National Commission on Excellence in Education (1983). A nation at risk: The imperative for educational reform. Washington, DC: U. S. Government Printing Office.

Patterson, J. H. (1990). Graduation vs. education: Reform effect for at-risk youth. In S. H. Fuhrman \& B. Malen (Eds.), The Politics of Curriculum and Testing: The 1990 Yearbook of the Politics of the Education Association (pp. 81-101). Philadelphia: Falmer Press.

Resnick, D. P., \& Resnick, L. B. (1985). Standards, curriculum, and performance: A historical and comparative perspective. Educational Researcher, 14, 5-20.

Vocational Education. (1990, November 14). Educational Week, p. 17.
Westat, Inc. (1988, May). Preliminary tabulations: Nation at risk update study as part of the 1987 high school transcript study (Report for the U.S. Dept. of Education, C ${ }^{6}$ cer for Education Statistics). Rockville, MD: Author.

Williams, P. (1987, October). Standardizing school dropout measures (CPRE Research Report Series RR-003). New Brunswick, NJ: Rutgers University, Center for Policy Research in Education.

Wilson, B., Rossman, G. B., \& Adduci, L. (1989, March). Local variation in response to state reform of high school graduation requirements. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA and prepared for Research for Better Schools, Philadelphia, PA.

## Appendix A

| Total \# of Required Credits (PRIOR) | STATE GRADUATION REOUIREMENTS IN SAMPLE STATES ${ }^{\text {I }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total " of Required Credits (NEW) | Effective <br> Date of New <br> Requirements | Change in Total \# of Required Cnsdits (CHANGE) | Requirements in Core Subjects ${ }^{2}$ |  |  |  |
|  |  |  |  | Subject | Prior | New | Change |
|  |  |  | CALIFORNIA |  |  |  |  |
| L.O. ${ }^{4}$ | 13 | 1987 | 13 | English | Lo. ${ }^{4}$ | 3 | 3 |
|  |  | . |  | Math |  | 2 | 2 |
|  |  |  |  | Science |  | 2 | 2 |
|  |  |  |  | Social |  |  |  |
|  |  |  |  | Studies | 3 | 3 |  |
|  |  |  |  | CORE |  | 10 | 10 |
|  |  |  |  | OTHER |  | 3 |  |
|  |  |  |  | TOTAL |  | 13 |  |
|  |  |  | FLORIDA |  |  |  |  |
| L.O.4 | $24^{5}$ | 1987 | 24 | English | L.O.4 | 4 | 4 |
|  |  |  |  | Math |  | 3 | 3 |
|  |  |  |  | Science |  | 3 | 3 |
|  |  |  |  | Social |  |  |  |
|  | . |  |  | Studies | 3 | 3 |  |
|  |  |  |  | CORE |  | 13 | 13 |
|  |  |  |  | OTHER |  | 11 |  |
|  |  |  |  | TOTAL |  | 24 |  |
|  |  |  | MISSOURI |  |  |  |  |
| 20 | 22 | 1988 | 2 | English | 1 | 3 | 2 |
|  |  |  |  | Math | 1 | 2 | 1 |
|  |  |  |  | Science | 1 | 2 | 1 |
|  |  |  |  | Social |  |  |  |
|  |  |  |  | Studies | 1 | 2 | 1 |
|  |  |  |  | CORE ${ }^{6} 4$ | 9 | 5 |  |
|  |  |  |  | OTHER | 16 | 13 |  |
|  |  |  |  | TOTAL | 20 | 22 |  |
| $13^{7}$ |  |  | PENNSYLVANIA |  |  |  |  |
|  | $21^{7}$ | 1989 | 8 | English | 3 | 4 | 1 |
|  |  |  |  | Math | 1 | 3 | 2 |
|  |  |  |  | Science | 1 | 3 | 2 |
|  |  |  |  | Social |  |  |  |
|  |  |  |  | Stucies 2 | 3 | 1 |  |
|  |  |  |  | CORE | 7 | 13 | 6 |
|  |  |  |  | OTHER | 6 | 8 |  |
|  |  |  |  | TOTAL | 13 | 21 |  |

## Appendix A (cont.)

## 1. Data Sources:

Belsches-Simmons, G., Flakus-Mcnqueda, P., Lindner, B., \& Mayer, K. (1987, March). "Recent state educational reform: Initial teacher certification, teacher compensation and high school graduation requirements." Denver, CO: Education Commission of the States.

Education Commission of the States. (1987, August). "Minimum high school graduation course requirements." Denver, CO: Author.

Goertz, M. E. (1988). "State educational standards: A 50-state survey." Princeton, NJ: Educational Testing Service.
National Center for Education Statistics. (1988). "The condition of education: Elementary and secondary education." Washington, DC: U.S. Department of Education.
2. Requirements are defined as the necessary prerequisites for a standard high school diploma.
3. Social studies includes courses such as American History, Civics, Economics, state history, etc. English includes language arts, communication skills, etc.
4. Local Option: Requirements set by local board.
5. Florida phased in credit requirements by moving from no state specifications in 1983 to 22 required credits in 1985 and 1986 to 24 required in 1989.
6. Missouri requires 2 additional years from among core subjects.
7. In 1989, Pennsylvania students must complete 13 credits in the last 3 years of high school; in 1989, they must
complete 21 credits in 4 years. complete 21 credits in 4 years.

## Appendix B

CHARACTERISTICS OF DISTRICT AND SCHOOL SAMPLE


Appendix B (cont'd)


Appendix B (cont'd)

| Dimblutseninot | XHindtis: | 4.4.4: mis: 15n: |  <br> \& \& $\qquad$ | 3imack cin himion: <br>  |  | 4.: lequrs.s.l: <br>  |  cin, 4$\}$ <br>  © | 35:5.5 shys. 7. c $811=4,4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLORIDA (cont.) <br> High School 6 | 99\% | urban | Stanford mean reading comprehension percentile $=28$; math computation $=$ 37 |  |  |  |  |  |
| District 5 | 86\% | rural | SSAT I (Grade 8) $=$ math $=72$; reading $=77$; writing $=74$ | English <br> Math <br> Science <br> Soc. Stud. <br> Art <br> Phy Ed <br> Health <br> Electives <br> Total | $\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 1 \\ & .5 \\ & .5 \\ & 2 \\ & 24 \end{aligned}$ | 1986 | $\begin{aligned} & 1982 \\ & 1985 \\ & 1987 \end{aligned}$ | $\begin{aligned} & 1981 \\ & 1983 \end{aligned}$ |
| High School 7 | 51\% | rural | $\begin{aligned} & \text { CTBS }=40 \text { (grade } \\ & 9 \text { ) } \end{aligned}$ |  |  |  |  |  |
| High School 8 | 87\% | rural | $\begin{aligned} & \text { CTBS }=17 \text { (grade 9) } \\ & \text { (national } \%=50 \text { ) } \end{aligned}$ |  |  |  |  |  |

48

| Bifinctuschisil | Whantis: |  Yj: |  4.s! |  <br>  |  | \% $\%$ : <br>  <br>  | 4, , <br> 24\% 4 <br> \% 8 <br> 参 |  54 $5,4 \%$ <br>  cullsens |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MISSOURI <br> District 6 | 6\% | suburban | Average combined $\mathrm{ACT}=19.2$; \% who passed state reading test $=\mathbf{9 8 \%}$; \% passing state math $=89 \%$ | English <br> Math <br> Science <br> Soc. Stud. <br> Art <br> Phy Ed <br> Health <br> Electives <br> Total | $\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 1 \\ & 1 \\ & .5 \\ & \frac{8.5}{22} \end{aligned}$ | 1988 | $\begin{aligned} & 1982 \\ & 1985 \\ & 1988 \end{aligned}$ | $1981$ |
| High School 9 | N.A. | suburban | Mean ACT reading $=326 ;$ math $=325$ |  |  |  |  |  |
| High School 10 | N.A. | suburban | N.A. ${ }^{1}$ |  |  |  |  |  |
| District 1 | 26\% | urban | TAP-10th grade equiv. scores: reading $=8.6$; math 9.2 | English <br> Math <br> Science <br> Soc. Stud. <br> Art <br> Phy Ed <br> Electives <br> Total | $\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 1 \\ & 6 \\ & 22 \end{aligned}$ | 1985 | $\begin{aligned} & 1982 \\ & 1985 \\ & 1988 \end{aligned}$ | $\begin{aligned} & 1981 \\ & 1985 \end{aligned}$ |
| High School 11 | 68.7\% | urban | TAP-10th grade equiv score: reading $=8.8$ mean; math $=$ 9.0 |  |  |  |  |  |
| High School 12 | 99.1\% | urban | TAP-10th $=$ reading $=8.6$ mean; math 9.2 |  |  |  |  |  |

!

Appendix B (r ont'd)


Appendix B (cont'd)

|  |  | , 4 , \$ 4.41乡 |  <br>  |  <br>  <br>  |  |  |  |  <br>  cidisk |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PENNSYLVANIA (cont.) District 9 | 75\% | urban | Average combined score on SAT: 772 | English | 4 |  | 1982 | 1931 |
|  |  |  |  | Math | 3 |  | 1985 | 1985 |
|  |  |  |  | Science | 3 |  | 1988 |  |
|  |  |  |  | Soc. Stud. | 3 |  |  |  |
|  |  |  |  | Health/Phy | 1.5 |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 2 |  |  |  |
|  |  |  |  | Electives |  |  |  |  |
|  |  |  |  | Total | $5$ |  |  |  |
|  |  |  |  |  |  |  |  |  |
| High School 15 | N.A. | urban | Mean SAT verbal $=$ |  |  |  |  |  |
|  |  |  | $331 ; \text { math }=345(\mathrm{~N}$ |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| High School 16 | N.A. | urban | N.A. ${ }^{1}$ |  |  |  |  |  |

1. No common achievement test data are available across sites. Thus, our decisions were based on best measure available as well as "informed opinion" of districts' research or administrative staff.
2. Based on 1987 calculations. Immigration statistics change constantly due to mass immigration.
3. State average 84.88 respectively.

## Appendix C

Technical Notes on Coding Courses from Transcripts
Our central objectives were to calculate the average number of credits per student by subject, to compare the credits taken in each subject by level of difficulty, and to compare these figures from 1982 to 1988.

## Numbers of credits and credit algorithms

Since the schools differed in their methods of awarding credits to ccurses, before we could determine the average number of credits in each subject, it was necessary to standardize the credit systems. To standardize credit-awarding systems which differed across schools and time periods, algerithms were created for each district.

The most common method of assigning credits to courses is to award credits based upon the amount of time a student spends in a course. Usually, one credit is assigned to a course which is offered for the full academic year; 36 weeks, 5 days a week, for 55 minutes each. Half of a credit is assigned to a one semester course which is offered for one semester, or 18 weeks, 5 days a week for 55 minutes each. However, some school districts used different methods to award credits. For example, one of the California districts assigns 5 credits to a course which is offered for the full academic year; 36 weeks, 5 days a week for 55 minutes each. To standardize the system in the California district, credit values had to be divided by 5.

Before 1983, one of the Florida districts assigned one credit to semester courses. In the summer session of 1983, the Florida district switched to assigning half a credit to one semester courses, and one credit to courses offered for the full academic year. To standardize the system in the Florida district, the credit values of courses offered before 1983 had to be divided by 2. In one of the Pennsylvania districts, prior to the 1984-85 school ynat, a course offered for the full academic year was assigned 10 credits. After the 1984-85 school year, a course offered for the full academic year was assigned 1 credit. To standardize the system in the Pennsylvania district, credit values of courses offered before the 1984-85 school year were divided by 10.

Other problems were raised in our effort to standardize credit systems across districts. In some scbool distrizts, courses are assigned fractional credit values. A number of explanations account for this. For example, translating the credits of students which have transferred from schools which operate on a trimester schedule, into semester credits, often results in fractional credit values such as .33 or .66. In some districts, special education students, or students entering a school later in the semester, may earn partial credits for a course. In addition, in some cases, adult education classes which are offered after school as make-up classes may be assigned fractional credits. In one of the California districts it is up to the instructor of the adult education classes to assign credits to these adult education or mateup courses, based on the amount of time that the student spends in the class. For example, a student who started the Basic English, Adult Education course later in the semester was awarded 2.66 credits as opposed to 3 credits normally awarded for the full semester course.

In a second California district, students enrolled in the Math I course are awarded fractional credits as determined by the instructor. The Math I course is taught on an individualized basis and the credits awarded are based on student output; the more units the student completes, the more credits the student is awarded. This basis for assigning credits is an exception to the rule, since it is based on student output rather than the amount of time the student spends in the class.

Another problein raised in creating a standardized system to compare credits across schools and districts is that some schools offer credit for courses which other schools do not. For example, some districts offer credit for driver education classes while others do not. However, the discrepancies here are very minimal since the total number of credits awarded for driver education courses is generally .5 credits for one semester. Another example, in the two Pennsylvania high schools, 98 of the 376 students in our Pennsylvania sample were enrolled in a course entitled "FLA." While we were unable to decipher this course title, our results will not be affected since the students did not receive credit for this course.

One problem related to recording the total number of credits earned per subject was that in a few cases the course titles and credit values on the transcripts were illegible. Several of the transcripts from one school district in particular, were handwritten in pencil and illegibility prevented us from identifying the course title or credit value.

## Content of Courses for coding

Several problems and issues were revealed in the process of coding courses. Many courses had unusual titles and were difficult to decipher for example, abbreviations, notations, and typographical errors often made it difficult to decipher the course subject or level of difficulty. In most instances the math and science courses had more uniform course titles across schools and districts and this simplified the coding process. In comparison, much wider variations existed across schools and districts in the vocational, English, social studies, fine arts, and foreign language courses.

Deciphering courses with unusual titles involved sending copies of transcripts with course titles which were unidentifiable to each school with follow-up phone calls. Fer example, we discovered that "FSHN MCHD" was a vocational course in "Fashion Merchandizing" and that "Promise America" was a U.S. History course. Transcripts of 1982 graduates included records of courses taken in 1978. In the case of unidentified course titles on the transcripts from earlier time periods, we attempted to contact department chai persons and counselors who had worked in the school during that time period. It was more difficult for the current school officials to decipher course titles that were taught over 8 to 10 years ago.

In some cases, undistinguishable courses were transfers from other schools and school officials were unable to decipher the precise course title. For example, while only one student in our sample was enrolled in the course entitled "HAT Construction," and the lack of identification will not influence our results, we were not able to decipher or even identify the subject area of the course. Other courses we were not able to decipher the course title or subject include "ANITES," "CON APP", "SOOP," and "QUIEST." In a few cases we were
able to identify the subject area of the course without deciphering the entire course title, such as "CORR Math," "OI Math," "MTR Science," and "VE Science." In these cases we were able to include the courses in our calculations of the number of credits taken by surject area but we were not able to include these courses in our calculations of the upgrading of courses by level of difficulty.

We were able to decipher the majority of the math and science course titles. Out of a total of 9,501 course titles enrolling 2,923 students (including 1,260 graduates and 1,653 ninth graders), we were unable to decipher the titles of 171 courses including 7 math and 11 science courses. A total of 424 students were enrolled in these courses, including 14 students enrolled in math courses, 12 enrolled in science courses, and the remaining 398 students were earolled in vocational, English, social studies, physical education, personal skills, and foreign
guaye courses. While in some cases it may have been possible to make "intelligent guesses" as to what the notations or abbreviations in the course titles stood for, in an attempt to provide as $m, a$ accuracy as possible we voided categorizing unsolvable course titles.

The fc. 'wing examples are provided to give a sense of how several courses from our sample did not fit precisely into the categories provided. Rather than create new codes we attempted to "squeere" the courses into the pre-existing codes as outlined by the SST system. An English course from a Missouri district entitled "Think and Write" was coded as a creative writing course and the course entitled "Play Reading" from a California district was coded as "Oral Interpretation" under the speech classification. When we telephoned one of the California districts about an English course entitled "Books You Missed," we discoverosit that the course covers the classics and well-known novels and we coded the course as "Novels" under the literature category. In addition, the SST does not have a separate classification for bilingual courses and therefore bilingual science was classified in the basic science category and bilingual world geography was classified in the world geography category.

## Coding Level of Difficulty

Tc classify courses according to level of difficulty we used the SST as a model. While atraining agreement on course classification is very complicated, the SST was reviewed extensively by consulting vocational and academic educators and researchers, in addition to staff from the National Assessment for Vocaticnal Education. As stated earlier, the SST classifies courses by subject and course level. Fur exampie, in math the SST uses basic, general, applied, pre-algebra, algebra 1, geumetry, and advanced. In addition, we rolied on the Council of Chief State School Officers (CCSSO) State Science and Math Indicators Project (Blank \& Dalkilic, in press) to code math and science courses by level of difficulty. We wanted a workable number of levels to facilitate comparisons within subjects and across subjects, and across time periods. Three levels allow for nore specific classification from course to course, with comparisons among low, medium and high levels of difficulty. With only two levels, distinctions among remedial, introductory and advanced level courses would be lost, and with four levels, the distinctions would not be as clear.

We encountered a number of pro iams in coding courses by level of difficulty. Variations in the methois by rohich schools ami cistricts identify courses complicated the process of determining the level of difficulty of the courses. For example, some districts
identify their upper level courses as honors classes, other schools identify them as advanced placement or gitted classes. In many of the schools, there has been a trend away from identifying classes for lower-achieving students as "remedial" or "slow." Instead, in an attempt to avoid an obvious labeling of these classes, the courses are identified with a symbol such as an "A" or are called "opportunity" or "motivational" classes. As we contacted schools to identify courses with unusual titles, we also inquired about the level of difficulty of these courses.

In addition, questions of comparability arose, regarding the levels of difficulty of the courses, both across and within subjects. For example, within subjects areas it is questionable as to whether or not the level of difficulty of a vocational course such as Cake Decorating I is comparable with the level of difficulty of a vocational course such as Power Mechanics I. We saw no easy solution to this problem since it would be difficult to judge whether introductory machinery courses required more skill than baking courses. To avoid making value judgements, we grouped all first level arts, English, foreign language, personal skills, social studies, and vocational courses (such as Drawing I) as basic level courses. All courses which are second in a sequence (such as Drawing II), we coded as middle level courses, and courses which are third or fourth in a sequence (such as Drawing III and IV), we coded as advanced level courses.

We classified math and science courses somewhat differently than vocational, art, English, foreign languages, personal skills, and social studies courses. Using the SST as well as the CCSSO State Science and Math Indicators Project (Blank \& Dalkilic, in press), we attempted to categorize math and science courses by three levels of difficulty and to match them as closely as possible to the categories already outlined by SST and CCSSO. Unlike the other subjects, both math and sciew, : have many courses below "Level I" in difficulty. Thus, the level I for niath and science mist be at least "niddle" compared to a subject like "Drawing " when: the "I" level is the beginning course. For example, in math, we classified Remedial Math as basic, Pre-algebra as middle, and Algebra I as advanced. Similarly, in science, we classified Basic Biology as basic, Biology I as middle, and Biology II (or Advanced Biology) as advanced.

In using this method, we realize that across subjects, the levels of difficulty are not necessarily comparable. For instance, while few would question the accuracy of categorizing Cake Decorating I as a basic level vocational course, or categorizing Basic Biology as a basic level science course, the level of difficulty of the two courses are not necessarily perfectly : atched. One method that we used to avoid this problem was to compare changes in academic course-taking versus changes in non-academic course-taking.

## Appendix D

Course Classifications from the Secondary Schools Taxonomy (SST) ${ }^{1}$

## Math

## BASIC

a. Basic

| 27.0105 | Mathematics, Remedial <br> Mathematics, Basic |
| :--- | :--- |
| 27.0601 | Mathematics, Basic 1 |
|  | Arithmetic Review |
|  | Competency Mathematics |
|  | Mathematics Lab |
|  | Mathematics, Essentials |
|  | Mathematics, Remedial |
| 27.0602 | Development Math 2 |
|  | Math Fundamantals 2 |
|  | Mathematics, Basic 2 |
|  | Remedial Math 10 |
|  | Remedial Math 2 |
|  | Development Math 3 |
|  | Math Fundamentals 3 |
|  | Mathematics, Basic 3 |
|  | Remedial Math 11 |
|  | Remedial Math 3 |

b. General
27.0103 Mathematics 8
27.0106 Mathematics 1, General

Computational Skills 1
Mathematics 1, Applied
27.0107 Mathematics 2, General

Computational Skills 2
Matherratics 2, Applied
27.0113 Mathematics Tutoring

[^11]
## Appendix D (cont'd)

## MIDDLE

c. Applied

$11.0111 \quad$| Computers, Introduction |  |
| :--- | :--- |
|  | Computer Literacy |
|  | Computer Appreciation |

11.0121 Computer Mathematics 1 Computer Problem Solving Mathematics and Computing
27.0110 Mathematics, Vocational Mathematics for Trade and Industry Shop Mathematics
27.0111 Technical Mathematics
27.0114 Consumer Mathematics

Mathematics Survival Skills
${ }^{2}+27.0115 \quad$ Consumer Mathematics II
27.0300 Applied Mathematics, Other
d. Pre-Algebra
27.0401 Algebra, Basic

Algebra Skills
Algebra, Introduction
Algebra, Practical
Algebra, Principles
Pre-Algebra

## ADVANCED

e. Algebra 1
27.0404

Algebra 1
Algebra, Elementary
f. Geometry
27.0406
27.0407

Geometry, Plane
27.0408

Geometry, Solid
27.0408

Geometry
27.0409 Geometry, Informal

Geometry Design
Geometry, Intuitive
Geometry, Occupational
Geometry, Physical
Geometry, Practical

[^12]
## Appendix D (cont'd)

Math, cont.
g. Advanced-Other +27.0199 Advanced Math 27.0405 Algebra 2

Algebra, Intermediate
27.0410 Algebra 3

Algebra, Advanced
Algebra, College
Algebraic Systems
Mathematics, Advanced
27.0411 Trigonometry
27.0412 Geometry, Advanced Analy'ic Gpometry
27.0413 Trigonometry and Solid Geometry
27.0414 Algebra and Analytic Geometry
27.0416 Mathematical Analysis

Analysis, Elementary
Analysis, Introductory
Elementary Functions
Limits and Functions
Mathematical Analysis
Pre-Calculus
27.0417 Algebra, Honors

Matrix
Linear
$27.0521 \quad$ Probability
27.0531 Probability and Statistics
+27.8800 Advanced Algebra-Trigonometry
h. Advanced Calculus
27.0419 Calculus
27.0420 Mathematics, Advanced Placement Honors Calculus, Advanced Placement

Science
BASIC

| 26.0121 | Biology, Basic |
| :---: | :--- |
|  | Biology, Essentials |
|  | Biology, Functional |
|  | Biology, Patterns |
|  | Life Science |
|  | Natural Science |

Science, cont.
30.0111 Science, General

Physical and Life Science
Science Ideas
Science Workshop
Science, Applied
Science, Basic
Science, Unified
$40.0121 \quad$ Science 9
Chemistry and Physics
Physical Science
40.0511 Chemistry, General

Chemistry Concepts
Chemistry, Fundamentals
Chemistry, Introductory
Chemistry, Applied
Consumer Chemistry
$40.0551 \quad$ Chemistry, Applied
Consumer Chemistry
40.0611 Earth Science 9

Earth Science, General
Earth Science

## MIDDLE

| 26.0131 | Biology, General <br> Eiology I <br> Biology, Introductory |
| :---: | :--- |
| 40.0521 | Biology, Regents <br> Chemistry I |
| Chemistry, College Preparatory |  |
| 40.0821 | Chemistry, Regents <br> Physics I <br> Physics, College <br> Physics, Regents |

## ADVANCED

14.0200 Aerospace, Aeronautical, and Astronautical, Other
14.0500 Bioengineering and Biomedical Engineering, Other

Biology 2
Biology, Advanced Placement
Biology, Advanced
Biology, College
Field Biology
Biology, Regional
$26.0161 \quad$ Genetics

Science, cont.

| 26.0311 | Botany |
| :---: | :---: |
|  | Plants and People |
|  | Trees and Shrubs, Local |
| 26.0511 | Microbiology |
|  | Bacteriology |
| 26.0611 | Ecolcs ${ }^{\text {y }}$ |
| +26.0612 | Environmental Science |
| 26.0621 | Marine Biology |
|  | Biology, Aquatic |
|  | Marine Studies |
| 26.0622 | Marine Biology 2 |
|  | Marine Biology, Advanced |
| 26.0631 | Anatomy |
| 26.0700 | Zoology, Other |
| 26.0711 | Zoology |
| 26.0741 | Anatomy and Physiology |
|  | Human Biology |
|  | Physiology, Human |
| 26.0751 | Anatomy and Physiology |
|  | Human Biology |
|  | Physiology, Human |
| 26.0752 | Physiology, Advanced |
| 40.0211 | Astronomy |
| 40.0522 | Chemistry 2 |
|  | Chemistry, Advanced Placement |
|  | Chemistry, Advanced |
| 40.0822 | Physics 2 |
|  | Physics Honors |
|  | Physics, Advanced |
|  | Physics, Advanced Placement |
| 40.0900 | Plauetary Science, Other |
| 40.0911 | Rocketry and Space Science |
|  | Space Science |
| 40.9900 | Physical Sciences, Other |

Vocational
BASIC

| 01.0100 | Agricultural Business and Management 1 |
| :--- | :--- |
| 01.0111 | Vocational Agriculture I |
|  | Agricultural Business <br> Agribusiness, Introduction |
| 01.0131 | Farm and Ranch Management 1 |
| 01.0171 | Agriculture Cooperativa Ed I <br> Agriculture Cooperatives |

Vocational, cont.

| 01.0211 | Introduction to Agricultural Mechanics Agricultural Mechanics, General |
| :---: | :---: |
|  | Agricultural Construction and Maintenance |
| 01.0221 | Welding 1, Agricultural |
| 01.0311 | Agricultural Production I |
|  | Agricultural Production, General |
|  | Production Agriculture |
| 01.0331 | Crop Production 1 |
| 01.0600 | Vocational Horticulture 1 |
|  | Horticulture, Other |
| 01.0611 | Horticulture 1 |
|  | Plant Propagation |
| 01.0631 | Landscaping 1 |
|  | Landscape Design |
|  | Landscape Maintenarice and Constructi |
|  | Landscaping and Home Fruit Production |
| 02.0111 | Agricultural Sciences, General |
|  | Agriculture Fundamentals |
| 02.0121 | Agricultural Occupations 1 |
| 02.0211 | Animal Sciences 1 |
| 02.0221 | Livestock 9 |
| 06.0111 | Business Introduction |
|  | Business Dynamics |
|  | Business Survey |
|  | Business, Basic |
|  | Business, General |
|  | Business Careers Overview |
| 06.0121 | Business Law 1 |
| 06.0141 | Business Education 1, Cooperative |
| 06.0211 | Accounting 1 |
|  | Business Management Careers |
| 06.0311 | Financial Carcers 1 |
| 06.1000 | Investments and Securities 1 |
| 07.0111 | Bookreeping 1 |
|  | Bookkeeping |
|  | Bookkeeping, Beginning |
| 07.0121 | Accounting 1 |
|  | Accounting |
|  | Clerical Accounting 1 |
| 07.0151 | Recordkeeping, Clerical |
|  | Recordkeeping |
|  | Recordkeeping 1 |
| 07.0161 | Office Machines 1 |
|  | Adding and Calculating Machines |
|  | Business Machines |
| 07.0171 | Business Miaciematics 1 |
|  | Business Arithnatic |
|  | Career Coxdestation 1 |

Vocational cont.

| 07.0201 | Banking and Financial Careers, Overview |
| :---: | :---: |
| 07.0311 | Business Computer Concepts 1 |
|  | Computers in Business |
| 07.0321 | Business Data Processing |
| 07.0331 | Business Computer Programming 1 |
|  | Business Computer Applications |
| 07.0341 | Keypunch Operator 1 |
|  | Data Entry Operator 1 |
| 07.0411 | Business English 1 |
|  | Business Communications |
|  | Computer Operator |
| 07.0611 | Shorthand 1 |
|  | Shorthand, Beginning |
|  | Stenography 1 |
| 07.0621 | Dictation and Transcription 1 |
|  | Machine Shorthand |
|  | Touch Shorthand |
|  | Transcription |
|  | Transcription, Machine |
| 07.0641 | Word Processing 1 |
| 07.0711 | Typewriting, Beginning |
|  | Typewriting, Business |
|  | Typewriting 1 |
| 07.0721 | Typewriting, Pth all 1 |
| 07.0731 | Clerk Typist 1 |
| 07.0741 | Office Occupations Work Experience 1 |
| 08.0711 | Marketing and Distribution 1 |
|  | Distribution and Marketing |
|  | Distribution 1 |
|  | Distributive Education 1 |
|  | Merchandising 1 |
|  | Retailing and Merchandising |
|  | Sales and Marketing |
| 08.0751 | Cashier Check fraining 1 |
| 09.0711 | Broadcasting, Introduction |
| 11.0100 | Computer and Information Sciences 1 |
| 11.0211 | Computer Programming 1 |
| 12.0111 | Dry Cleaning 1 |
| 12.0411 | Cosmetology 1 |
| 15.0571 | Veterinary Sciences 1 |
| 15.0611 | Industrial Production Technology |
|  | Manufacturing Process Technology I |
| 17.0111 | Dental Assistant 1 |
|  | Dental Office Assisting |
| 17.0400 | Human Services 1 |

## Appendix D (cont'd)

Vocational, cont.

| 17.0511 | Health Occupations 1 Health Careers |
| :---: | :---: |
|  | Medical Carser Opportunities |
| 17.0551 | Medical Assisting 1 |
| 20.0100 | Consumer and Homemaking Home Economics |
|  | Consumer Business 1 |
| 20.0113 | Comprehensive Consumer and Homemaking Economics 1 |
|  | Home Arts |
|  | Home Economics 1 |
|  | Homemaking 1 |
|  | Homemaking, General |
| 20.0117 | Adult Roles and Functions |
|  | Singles Survival |
|  | Independent Living |
|  | Survival Skills |
| 20.0171 | Family Sociology 1 |
|  | Family Relations |
|  | Family Living |
| 20.0122 | Child Development 1 |
| 20.0133 | Clothing Construction |
|  | Sewing 1 |
|  | Closhing 1 |
|  | Sewing, Introduction |
|  | Textiles and Clothing 1 |
| 20.0141 | Economics, Personal |
|  | Consumer Education 1 |
|  | Comparison Buying and Budgeting |
|  | Economic Survival |
|  | Money Management, Personal |
|  | You and Your Money |
| 20.0151 | Home Economics Occupations 1, Exploratory |
|  | Home Economics Job Training Exploration |
| J. 0173 | Parent Education 1 |
|  | Parenting |
|  | Parenthood |
| 20.0183 | Foods Preparation, Basic |
|  | Family Meals |
|  | Foods 1 |
|  | Kitchen Survival |
|  | Meal Management |
|  | Nutrition and Food Management 1 |
| 20.0191 | Home Managexnent 1 |
| 20.0211 | Child Care Services 1 |
|  | Nursery School Training |
|  | Child Development Services |
|  | Early Childhood Workshop |


| 20.0411 | Food Service Training 1 |
| :---: | :---: |
|  | Restaurant Occupations 1 |
|  | Chef Class |
|  | Commercial Foods, Basic |
|  | Culinary Arts 1 |
| 20.0430 | Cake Decorating 1 |
| 20.0431 | Baking 1 |
| 20.0451 | Catering 1 |
| 20.0511 | Home Furnishings 1 |
| 20.0513 | Interior Design Occupations 1 |
|  | Home Environment Occupations |
| 21.0103 | Industrial Cratts 1 |
|  | Shop, General |
|  | Industrial Arts 1 |
|  | Industrial Arts Orientation |
|  | Industrial Materials 1 |
|  | Shop 1, Exploratory |
| 21.0111 | Industrial Cooperative Work Experience 1 |
| 21.0115 | Electronics, Basic |
|  | Circuits, Fundamental |
|  | Electronics 1 |
| 21.0121 | Machine Shop 1 |
|  | Industrial Machine |
|  | Machine Lab |
| 25.0111 | Library Skills 1 |
|  | Library Science |
| 25.0311 | Library Aide 1 |
|  | Library Assistant |
| 31.0100 | Recreational Services 1 |
| 32.0102 | College and Career Planning 1 |
|  | Business Opportunities |
|  | Career Preparation |
|  | Guidance |
|  | Job Entry Training |
| 32.0103 | Career Exploration |
|  | Career Development |
|  | Career Education |
|  | Occupational Exploratory Program |
|  | Vocations, Introduction |
|  | Work Observational Experience |
| 32.0104 | Work Experience 1 |
|  | Job Entry |
| 32.0106 | Cooperative Education 1 |
|  | Cooperative Training, Diversified |
|  | Vocational Cooperative Program |
| 32.0121 | Off-Campus VO TECH Training 1 |

Vocational, cont.
46.0111 Bricklaying and Masonry 1
46.0211 Carentry
46.0411 Building Construction 1
$46.0431 \quad$ Building Maintenance 1
46.0441 Home Maintenance and Repair 1
$46.0511 \quad$ Plumbing 1
47.0131 Appliance Repair 1 Major Appliance Repair
47.0211 Air Conditioning, Refrigeration, and Heating 1 Commercial Heating and Air Conditioning Refrigeration and Air Conditioning
47.0511 Energy and Transportation 1

Power Mechanics 1
Power Conversion 1
Power Technology 1
47.0611 Mechanics Trades 1

Small Engine Repair 1 Motorcycle and Recreational Vehicle Repair Small Engine Maintenance
Small Gas Engines
47.0621 Auto Mechanics 1

Auto Repair
Auto Engines
Vehicle Power
47.0631 Auto Body 1

Auto Body and Fender
Auto Body Repair
47.0641 Auto Service 1
47.0661 Airframes 1
48.0111 Mechanical Drawing 1

Drafting 1
Dratting Fundamentals
Projection Theory
48.0121 Architectural Drawing 1

Architectural Drafting 1
48.0131 Engineering Drawing 1

Engineering Drafting 1
Engineering Graphics 1
48.0211 Commercial Art 1

Advertising Design
$48.0231 \quad$ Sign Painting I
$48.0321 \quad$ Upholstery 1

Vocational, cont.
48.0511
48.C521
48.0531
48.0611
48.0711
48.0721
48.0731
49.0411
50.0400
50.0411

## MIDDLE

| +01.0612 | Horticulture 2 |
| :--- | :--- |
| 07.0112 | Bookkeeping 2 |
|  | Bookkeeping, Advanced |
| 07.0122 | Accounting 2 |
|  | Accounting Careers |
|  | Accounting, Advanced |
| 07.0332 | Clerical Accounting 2 |
| 07.0612 | Business Data Processing 2 |
|  | Shorthand 2 |
|  | Shorthand, Advanced |
|  | Stenography 2 |
| 07.0712 | Stenography, Advanced |
|  | Typewriting 2 |
| 07.0732 | Typewriting, Advanced |
| 11.0131 | Automated Office 2 |
| 11.0212 | Computer Applications |
| 11.0232 | Computer Programming 2 |
| 11.0242 | Advanced Pascal |
| 11.0252 | Basic 2 (Advanced) |
| 12.0412 | Advanced Cobol |
|  | Cosmetology 2 |
| 15.0321 | Cosmetology, Advanced |
| 15.0333 | Electrical Technology |
| 17.0112 | Electronics Fabrication |
|  | Dental Assistant 2 |

Metal 1
Machine Metals
Metal Class
Metal Lab
Metal Work
Metal Trades
Welding 1
Sheet Metal 1
Plastics 1
Woodworking 1
Woodworking, Basic
Wood 1
Furniture Refinishing 1
Cabinetmaking 1
Millwork
Transportation Technology I
Furniture Design 1
Graphic Design I

Introduction to Transportation Industry (Land, Sea, Air)

Vocational, cont.

| 20.0114 | Comprehensive Consumer and Homemaking Home Economics 2 Home Economics 2 |
| :---: | :---: |
|  | Homemaking 2 |
| 20.0123 | Child Development 2 |
| 20.0134 | Clothing Constructiox, Intermediate |
|  | Sewing 2 |
|  | Clothing 2 |
|  | Sewing, Intermediate |
|  | Textiles and Clothing 2 |
| 20.0184 | Foods 2 |
|  | Nutrition and Food Management 2 |
|  | Cooking for Compliments |
|  | Foods Preparation, Advanced |
|  | Foods, Experimental |
|  | Gourmet Foods |
| +20.0201 | Child Care Services 2 |
| 20.0300 | Clothing, Apparel, and Textiles Management, Production and Service |
| +20.0432 | Cake Decorating II |
| 21.0104 | Industrial Arts 2 |
|  | Industrial Crafts 2 |
|  | Industrial Materials 2 |
|  | Shop 2, Exploratory |
| 21.0114 | Electrical Trades, Advanced |
|  | Electricity 2 |
| 21.0116 | Electronics 2 |
| 32.0105 | Work Experience, Advanced |
| 46.0112 | Bricklaying and Masonry 2 |
| 46.0212 | (an nentry 2 |
|  | Suactural Woods |
|  | Carpentry, Advanced |
| 46.0412 | Building Construction 2 |
| 46.0512 | Plumbing 2 |
| 47.0212 | Air Conditioning, Refrigeration, and Heating 2 |
| 47.0512 | Energy and Transportation 2 |
| 47.0632 | Auto Body 2 |
| 48.0112 | Drafting 2 |
|  | Mechanical Drawing 2 |
|  | Drafting, Techrical |
|  | Projection, Applied |
| 48.0122 | Architectural Drawing 2 |
|  | Architectural Drafting 2 |
| 48.0222 | Graphic Arts 2 |
|  | Graphic Communications 2 |
|  | Printing Production, Cooperative |
| 48.0512 | Metal 2 |
|  | Metalwork, Aövanced |
| 48.0522 | Welding 2 |


| 48.0612 | Plastic; 2 |
| :--- | :--- |
| 48.0712 | Woodworking 2 |
| 48.0722 | Funiture II |

## ADVANCED

| 07.0713 | Typewriting 3 |
| :---: | :---: |
|  | Typewriting, Career |
|  | Typewriting, Executive |
| 07.0733 | Business Careers 3 |
| 11.0132 | Computer Applications, Advanced |
| 11.0141 | Computer Science, Advancea Placement |
| 11.0213 | Computer Programming 3 |
| 11.0313 | Data Processing, Advanced |
|  | Data Processing, Internship |
| 20.0135 | Clothing 3 |
|  | Sewing 3 |
|  | Textiles and Clothing 3 |
| 20,0351 | Tustom Tailoring and Alteration |
| 20.0400 | Food Production, Management, and Services, Other |
| 21.0117 | Electronics 3 |
| 21.0118 | Electronics 4 |
| 46.0500 | Piumbing 4 |
| 47.0151 | Business Machine Repair Office Machine Repair |
| 47.0200 | Office Machine Repair |
| 47.0213 | Air Conditiuning, Refrigeration, and Heating 3 |
| 47.0633 | Auto Body 3 |
| 48.0113 | Drating 3 |
|  | Mechanical Drawing 3 |
|  | Illustration, Technical |
|  | Machine Drawing |
| 48.0114 | Dratting 4 |
|  | Mechanical Drawing |
| +48.0115 | Drating 5 |
| 48.0141 | Sxetching and Blueprint Reading |
|  | Blueprint Reading |
| 48.0523 | Welding 3 |
| 48.0524 | Welding 4 |
| 48.0713 | Woudworking 3 |
| 48.0714 | Woodworking 4 |
| 50.0800 | Engineering Graphics |

Art
BASIC

| 50.0100 | Visual and Performing Arts Visual Communications 1 |
| :---: | :---: |
| 50.0111 | Art and Music Survey 1 |
| 50.0213 | Craft 9 |
| 50.0214 | Craft 10 |
|  | Creative Crafts 10 |
|  | Crats 1 |
| 50.0231 | Decorator Crafts |
| 50.0241 | Enameling 1 |
| 50.0251 | Jeweiry Design 1 |
|  | Art Metals 1 |
| 50.0263 | Curamics 1 |
|  | Pottery 10 |
| 50.0311 | Modern Dance for Beginners 9 |
| 50.0341 | Periorming Dance Group 9 |
|  | Theater Dance 1 |
| 50.0351 | Ballet and Jaziz for Be;inners 9 |
| 50.0511 | Acting Fundamentals 9 |
|  | Theater Arts 1 |
|  | Drama 1 |
| 50.0511 | Film Appreciation |
| 50.0621 | Photigraphy 1 |
| 50.0703 | Art, General |
| 50.0704 | Art 9 |
|  | Art 1 |
| 50.0708 | Art 1, Independent Study |
| 50.0711 | Art Services 1 |
| 50.0714 | Drawing 1 |
|  | Drawing and Painting 1 |
| 50.0715 | Painting 1 |
| 50.0720 | Sculpture 1 |
| 50.0726 | Art History and Appreciation |
| 50.0900 | Drum and Bugle |
| 50.0901 | Music, Introduction |
| 50.0907 | Band 9 |
|  | Band, Beginoing |
| 50.0908 | Band, Concert |
| 50.0927 | Guitar, Beginning |
| 50.0931 | Tiano 1 |
|  | Keyboard 1 |
| 50.0935 | Chorus 1 |
| 50.0947 | Vocal Ensemble 1 |
| 50.0952 | Music Theory 1 |
| 50.0955 | Music History 1 |
| 50.0963 | Music Appreciation 1 |
| 50.0964 | Folk Guitar 1 |

Art. cont.
50.0965 50.9900

MIDDLE
50.0101 50.0215
50.0251
50.0264
50.0342
50.0512
50.0622
50.0705
50.0716
50.0908
50.0910
50.0921
50.0922
50.0926
50.0928
50.0932
50.0941
50.0948
50.0953
50.9956

ADVANCED
50.0216
50.0265
50.0313 Dance Technique 3
50.0332 Modern Dance, Advanced
50.0513 Acting Fundamentals 11

Acting Workshop

Art, cont.

| 50.0623 | Photography 3 |
| :--- | :--- |
| 50.0700 | Art Workshop |
| 50.0706 | Art 11 |
|  | Art 3 |
| 50.0707 | Art 12 |
|  | Art 4 |
| 50.0911 | Band, Symphonic |
|  | Senior Band Front |
| 50.0943 | Chorus 3 |
| 50.0945 | Chorus 4 |
| 50.0949 | Jazz Ensemble 4 |
| 50.0950 | Orchestration |
|  | Arranging |
| 59.0957 | Music History 3 |
| 50.0958 | Advanced Music History |

## English

BASIC
09.0400 Mass Media 1
09.0411 Journalism 1
20.0130 Novels
23.0100 English Review
23.0105 Remedial English
23.0106 Basic English Communication Skills
23.0107 English 9, Average

English 1
23.0108 English 9

English 1, Honors
23.0118 Modern Classical Literature
23.0125 Literature of the Bible
23.0126 Mythology
23.0127 Drama 1
23.0129 Plays, Modern Survey
23.0130 Novels
23.0131 Short Story
23.0133 Poetry
23.0138 Science Fiction
23.0141 Ethnic Literature

Minority Literature
23.0142 Women in Literature
23.0143 Sports Through Literature
23.0144 Supernatural Literature
23.0151 Seminar in an Author

English, cont.
23.0153
23.0200
23.0311
23.0401
23.0405
23.0408
23.0499
23.0511
23.0711
23.0721
23.0731
23.0771
23.0800
23.0821
23.1000
23.1011
23.1021
23.1211
23.1311
23.1707

## MIDDLE

09.0412
23.0109
23.0110
23.0111
23.0112
23.0402
23.0512
23.0612
23.0812
23.1012
23.1021
23.1212
23.1312

Journalism 2
English 10, Basic
English 2
English 10
English 2, Honors
English 11, Beiow Grade Level
English 3, Basic
English Writing 2
Creative Writing 2
Linguistics
Semantics and His'ory of Language
English Literature 2
Communication Skills 2
Debate 2
Reading Development 2
Language Arts 2

## ADVANCED

09.0413 Journalism 3
23.0113 Englist 11, Average

English 3
23.0114 English 3, Honors
23.0115 English 4, Basic

## Appendix D (cont'd)

## English, cont.

| 23.0116 | English 12, Average |
| :--- | :--- |
| 23.0117 | English 4, Honors |
| 23.0312 | English Literature and Composition, Advanced Placement |
| 23.0402 | English Writing 3 |
| 23.0512 | English Writing 4 |
| 23.0811 | Bríish Literature, Honors |
| 23.1024 | Debate 3 |
| 23.1213 | Reading Development 3 |
| 23.1313 | Language Arts 3 |
| 23.1314 | Language Arts 4 |
| 23.6813 | American Literature, Honors |

## Foreign Language

## BASIC

16.0111 Foreign Language, Exploratory
16.0121 English as a Second Language 1
16.0513 German 1
16.0903 French 1
16.0913 Italian 1
16.0920 Latin 1
16.0933 Spanish 1
16.0990 Foreign Language, Other

## MIDDLE

16.0121 English as a Second Language 2
16.0514 German 2
16.0904 French 2
16.0914 Italian 2
16.0921 Latin 2
16.0922 Latin 2, Honors
16.0934 Spanish 2

## ADVANCED

16.0123 English as a Second Language 3
16.0124 English as a Second Language 4
16.0515 German 3
16.0516 German 4
16.0905 French 3
16.0906 French 4
16.0935 Spanish 3
16.0936 Spanish 4

Personal Skills

## BASIC

09.0441 Yearbook
17.0211 First Aid and Safety
23.0414 Interpersonal Communication
28.0311 Army ROTC 1

Army leadership Development, Introduction
32.0100 Thasic Skills, Other
+32.0116 'Speedwriting
32.0211 Study Skills 1
33.0111 School Service

Student Assistant
33.0131 Student Government
33.0141 Tutoring

Peer Tutoring
$33.0151 \quad$ Community Involvement
Community Service
$34.0113 \quad$ Physical and Health Education 1
$34.0121 \quad$ Physical Education, Adaptive
34.0133 Health Education 1
34.0141 Drugs Alcohol and Tobacco
34.0151 Driver Education, Classroom
34.0152 Driver Education, Practice
34.0161 Gym Aide
34.0181 Safety
34.0191 Human Sexuality and Reproduction Sex Education
36.0111 Sports, Individual
36.0121 Team Sports 1
36.0141 Drill Team
$36.0171 \quad$ Weight Training 1
36.0192 Experiential Outdoor Education 1

Outward Bound
Outdocr Leadership Training
38.0203 Bible Studies
38.0212 Religion, Introduction

## MIDDLE

28.0312 Army ROTC 2

Army Intermediate Leadership Development
$32.0212 \quad$ Study Skills 2
34.0114 Physical and Health Education 2
34.0134 Health Education 2
+36.0122 Team Sports 2
+36.0193 Experiential Outdoor Education 2

Personal Skills. cont.

## ADVANCED

| 28.0313 | Army ROrC 3 |
| ---: | :--- |
|  | Army Applied Leadership Development |
| 28.0314 | Army ROTC 4 |
|  | Army Advanced Leadership Development |
| 34.0115 | Physical and Health Education 3 |
| 34.0116 | Physical and Health Education 4 |
| 34.0135 | Health Education 3 |
| +36.0123 | Team Sports 3 |
| +36.0172 | Sports, Advanced |

## Social Studies

## BASIC

| 05.0102 | American Studies, Basic |
| :--- | :--- |
| 05.0103 | American Studies, General |
| 0.01 .0104 | American History and American Character |
|  | American People and Problems |
| 05.0113 | Contemporary America |
| 05.0114 | Latin American Studies |
| 05.0122 | World Studies 1 |
| 05.0125 | African Area Studies |
| 05.0127 | Asian and African Cultural Studies |
| 05.0133 | Russian Studies |
| 05.0135 | Soviet Union and Afro American Studies |
| 05.0138 | Global Studies |
| 05.0200 | Ethnic Studies |
| 05.0231 | Afro American Culture and History |
| 05.0251 | American Indians |
| 05.0271 | Mexican American Studies |
| 22.0111 | Law Fundamentals |
| 22.0121 | Law and Juvenile Justice |
| 20.131 | Law and You |
| 24.0400 | Street Law |
| Humanities and Social Sciences, Other |  |
| 3411 | Humanities |
|  | People and their Culture |
| 30.0431 | Humanities, American |
| 38.0111 | Philosuphy |
| 38.0121 | Ethics |
| 42.0111 | Psychology |
| 42.0600 | Counseling Psychology |
| 44.0711 | Human Services |
| 45.0111 | Social Studies, Introduction |
| 45.0141 | Social Studies, Independent Study |

Social Studies, cont.

| 45.0211 | Anthropology |
| :---: | :---: |
| 45.0311 | A rcaseology |
| 45.0601 | Fconomics 1 |
| 45.0700 | 'European Geography |
| +45.0702 | United States Geography |
| +45.00.04 | World Geography |
| 45.0820 | Mexican American History |
| 45.0807 | United States History, State and Local |
| 45.0810 | American History |
| 45.0811 | United States History 1 |
| 45.0816 | American History, Contemporary <br> Twentieth Century America |
| 45.0835 | World History <br> World History and Culture |
| 45.0840 | Western Civilization |
| 45.0842 | European History |
| 45.0848 | Early World History |
| 45.0852 | Modern European History |
| 45.0859 | Africa, Middle East, and Latin America |
| $45.100^{\prime}$ | Civics |
| 45.1012 | State and Local Gove ament |
| 45.1003 | American Government, Basic |
| 45.1006 | Constitutional History |
|  | Rights and Responsibilities |
| 45.1007 | Liberty and the Law |
| 45.1008 | American Political System |
| 45.1010 | Current Affairs |
| 45.1014 | Contemporary American Issues Citizenship |
| 45.1017 | Anerican Government and Economics |
| 4.4019 | Comparative Political Systems, Basic |
| 45.1020 | World History and Governments |
| 45.1028 | Political Leadership |
| 45.1029 | Political Science |
| 45.1031 | Political Economy |
| 45.1111 | Social Problems |
| 45.1121 | Sociology |
| 45.1211 | Urban Studies |

## MIDDLE

| +45.0112 | Social Studies 2 |
| ---: | :--- |
| 45.0602 | Economics 2 |
|  | Comparative Ecr nomics |
| 45.0812 | United States History 2 |

Social Studies, con:

## ADVANCED

| +42.0112 | Psychology, Honors |
| ---: | :--- |
| 45.0113 | American Government, Honors |
| +45.0116 | Social Sciences, Honors |
| 45.0118 | Americau Government and Economics, Honors |
| +45.0121 | Social Studies 3 |
| +45.0122 | Social Studies 4 |
| 45.0813 | United States History, Honors |
| 45.0814 | United States History, Advanced Placement |
| +45.0836 | World History, Honors |
| +45.0841 | Western Civilization, Honors |
| 45.0856 | European H:story, Hiodern, Advanced Placement |
| +45.1005 | American Goveriment, Honors |


[^0]:    * Reproductions supplied by EDRS are the best that can be nade

[^1]:    ${ }^{1}$ The prior requirements of 1 math and 1 science credit in Pennsylvania were for Grades 10-12. See Appendix A. If we assume that practically all high school students took a math and science course in 9 th grade, in effect meeting the 10 th grade requirement with their second course, the real change would be +1 in each subject.

    Our transcript data for the Pennsylvania high school seniors are for 1988 rather than 1989, the first graduating class bound by the new requirements. However, qualitative data gathered in a previous study suggest that, rather than dealing with two different sets of requirements and scheduling problems, many high schools anticipated the official required date and implemented the new requirements before 1989 (Clune, 1989).

[^2]:    ${ }^{2}$ One of the high schools in Missouri was an excention. Since this high school did not become a four-year high school until 1984, we included midaue school credits as shown on the transcript.

[^3]:    ${ }^{3}$ The SST classifies art as academic. In our analysis we have taken a view of core academic courses similar to "the Bible of school reform," A Nation at Risk (National Commission on Excellence in Education, 1983), and have classified art courses as non-academic.

[^4]:    ${ }^{7}$ See Appendix B for descriptive data on the school districts.

[^5]:    ${ }^{8}$ See Appendix B for descriptive data on the high schools.

[^6]:    ${ }^{9}$ The pre- and post-reform numbers are taken from the complete set of tables which are not incluted as part of this paper. In those tables, the change of -.44 is not statistically significant. Since changes of this size usually are statistically significant at the district level, apparently, there is considerable variation in vocational course-taking by student.

[^7]:    ${ }^{10}$ Pennsylvania increased the requirements for its vocational diploma, increased ac: ' $\quad$ mic requirements, and reduced the conflict betwesn these provisions by allowing local certification of voc tion! courses as satisfying academic requirements (Fuhrman, 1988). Vocational gains in rar Pennsylvania sample (Table 4) are contrary to other reports of substantial declines in vocatic,nal course earollments in that state (Vocational Education, 1990). But the vocational declines may have occurred in specialized vocational schools rather than in comprehensive high schools of the type studied here.

[^8]:    ${ }^{11}$ CCSSO statistical estimate based on course enrollments.
    ${ }^{12}$ CCSSO \% for Algebra I includes 8th grade.

[^9]:    ${ }^{13}$ CCSSO statistical estimate based on course enrollments.
    ${ }^{14}$ We have combined our student enrollments in Basic Biology and General Biology (also called Biology 1) to make comparisons with the CCSSO data. CCSSO uses the category "Biology, First Yea'," which includes general (including Biology I) and applied/basic biology.

[^10]:    ${ }^{15}$ The total number of students in each school sample ranged from 46-61 students. In addition to the students recorded on this table who completed credits in all 4 years or withdrew before completing 9th grade, each school sample also included students who completed credits in 9th grade only, in 9th and 10th grades, or in grades 9-11.

[^11]:    ${ }^{1}$ These course codes are compiled on the basis of the SST (Brown, C., Gifford, A. G., Hoachlander, E. G., Meyer, R. H., \& Tuma, J. E. (1989, February). The secondary schools taxonomy. Report prepared for the National Assessment of Vocational Education, U. S. Department of Education, Washington, DC. This table only includes courses in which students in our sample were enrolled in. In some subjects, especially vocational, as few as one student may be enrolled in a course.

[^12]:    ${ }^{2} \mathrm{On}$ this page and on subsequent pages of this appendix, the " + " indicates that the course code has been added to the SST. Students in our sample were enrolled in these courses, however, the SST did not have a separate code for them.

